

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 2

International Journal of Computer
Science Education in Schools

January 2018, Vol 2, No 2

DOI: 10.21585/ijcses.v2i2

Table of Contents
Articles

 Page

Alex Hadwen-Bennett, Sue Sentance, Cecily Morrison

Making Programming Accessible to Learners with Visual

Impairments: A Literature Review

 3 - 13

Ünal Çakiroğlu, Betül Er, Nursel Uğur, Esra Aydoğdu

Exploring the Use of Self-Regulation Strategies in Programming

with Regard to Learning Styles

14 - 28

Meng-Leong How, Chee-Kit Looi

Using Grey-based Mathematical Equations of Decision-making as

Teaching Scaffolds: from an Unplugged Computational Thinking

Activity to Computer Programming

29 - 46

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 3

Making Programming Accessible to Learners with Visual

Impairments: A Literature Review
Alex Hadwen-Bennett1

Sue Sentance1
Cecily Morrison2

1King's College London

2Microsoft Research Cambridge

DOI: 10.21585/ijcses.v2i2.25
Abstract

Programming can be challenging to learn, and for visually impaired (VI) learners, there are numerous additional
barriers to the learning process. Many modern programming environments are inaccessible to VI learners, being
difficult or impossible to interface with using a screen reader. A review of the literature has identified a number
of strategies that have been employed in the quest to make learning to program accessible to VI learners. These
can be broadly divided into the following categories; auditory and haptic feedback, making text-based languages
(TBLs) accessible, making block-based languages (BBLs) accessible and physical artefacts. A common theme
among the literature is the difficulty VI learners have in gaining an understanding of the overall structure of their
code. Much of the research carried out in this space to date focuses on the evaluation of interventions aimed at
VI high-school and undergraduate students, with limited attention given to the learning processes of VI learners.
Additionally, the majority of the research deals with TBLs, this is despite the fact that most introductory
programming courses for primary learners use BBLs. Therefore, further research is urgently needed to
investigate potential strategies for introducing VI children in primary education to programming and the learning
processes involved.

Keywords: visual impairments, programming education, physical programming, special needs

1. Introduction

The introduction of computing into the national curriculum for England in 2014, brought with it the requirement
for primary school children to be taught the basic concepts of programming from the age of 5 (Department for
Education, 2014). Programming can be challenging to learn and, for visually impaired (VI), learners there are
numerous additional barriers to the learning process. Many modern programming environments are inaccessible
to VI learners, being challenging or impossible to interface with using a screen reader (Baker et al., 2015; Stefik
et al., 2011) and user interfaces often employ highly graphical depictions (Ludi, 2013). Kane & Bigham (2014)
identified the following criteria for the development of environments in which VI children can learn to program:

• “Programming tools must be accessible to the student and must work with the assistive technology that
he or she uses.”

• “The student must be provided with programming tasks that hold their interest and provide encouraging
feedback.” (Kane & Bigham, 2014, p. 257).

This literature review sets out to provide an overview and discussion of the different strategies that have been
employed in order to make learning programming accessible to VI learners. Additionally, areas that require
further research will be identified and discussed.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 4

2. Methodology

This review examines literature from peer-reviewed sources, published between 2000 and November 2017.
Studies were identified by searching research databases, in addition to citation tracing. The following databases
were searched: ACM Digital Library, Taylor and Francis, IEEE, Eric and Wiley Online Library. The search
terms “visually impaired”, “programming” and “education” were initially used, followed by additional searches
employing alternative search terms with similar meanings, an overview of these terms is given in Table 1.

Search Term Alternatives

Visually Impaired Blind, visual impairments
Programming Coding, software development
Education Learning, learners, school

Table 1 Summary of Search Terms

Once a short list of articles was formed, the following criteria were used to decide whether the articles should be
included in the literature review:

• Papers were included if they had an educational focus, however a small number of other papers were
retained in order to provide contextual information.

• Papers were included if they were included in a peer-reviewed academic publication.
• Papers published since 2000 were included. One exception was made for a paper that is frequently cited

and therefore provides contextual information.

Upon further examination of the literature, four main themes emerged; making text-based languages accessible,
making block-based languages accessible, physical artefacts as well as auditory and haptic feedback. Each of
these themes is explored in turn in the following sub-sections. An overview of the literature cross-referenced by
theme is also provided in appendix A.

3. Overview of Literature

3.1 Making Text-Based Languages Accessible
3.1.1 Accessibility of Programming Environments

A survey of experienced VI developers has demonstrated that many programming environments are either not
fully compatible with screen readers or challenging to navigate solely using auditory feedback alone, this makes
them inaccessible to many VI programmers (Albusays & Ludi, 2016). For example Eclipse features a number of
tabbed windows, which can be accessed through keyboard shortcuts, however this is a time consuming process
when relying on auditory feedback (Cheong, 2010). Additionally, the BricxCC and Robot C programming
environments, which are both designed for programming Lego Mindstorms robots, are not fully compatible with
JAWS (a popular screen reader) (Ludi, 2013). Although Visual Studio (2010) is technically accessible, no sound
is generated to indicate when the user switches between tabs (Stefik et al., 2011).
One approach that has been taken to address the inaccessibility of programming environments is the use of a
standard text editor alongside a screen reader (Bigham et al., 2008; Cheong, 2010; Kane & Bigham, 2014). A
drawback of this approach is the loss of debugging tools that are standard in most modern programming
environments. Tools have also been developed to improve the accessibility of programming environments, for
example the Wicked Audio Debugger (WAD) was developed to work with the popular Visual Studio
programming environment to assist VI programmers with the debugging process (Stefik et al., 2007).

An alternative strategy is the development of accessible programming environments. An example is JavaSpeak,
which was developed as a tool to assist VI undergraduate students learn how to program in Java (Francioni &
Smith, 2002; Smith et al., 2000). It is based on the concept of EmacSpeak (Raman, 1996), which has a speech
interface aimed at experienced programmers. Unlike EmacSpeak, JavaSpeak is designed for undergraduate
students that are learning to program, enabling them to experience their code at different granularities. The
development process of the JavaSpeak environment has been described, however there is no evidence of
evaluation of the tool in use.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 5

More recently, the JBrick programming environment was developed to make the programming of Lego
Mindstorms robots accessible (Ludi, 2013). The NXC language (Not eXactly C) has been used in outreach
programs along with the BricxCC programming environment to enable VI learners to program Lego Mindstorms
robots (Dorsey et al., 2014; Ludi & Reichlmayr, 2011). However, the BricxCC programming environment is not
fully compatible with JAWS (a popular screen reader). JBrick was developed as an alternative to BricxCC, it is
compatible with common screen readers and braille displays, enables code to be easily located by line number
and provides both audio and visual feedback (Ludi et al., 2014).

3.1.2 Accessibility of Programming Languages
Another important consideration is the choice of programming language; many commonly used languages, such
as C and Java, make extensive use of non-alphanumeric characters such as brackets and curly braces, which can
be challenging to work with using a screen reader. Additionally, the complex syntax of many languages can
make typing mistakes more likely and debugging more challenging. Languages such as Ruby, which use mainly
text and limit the number of non-alphanumeric symbols are preferable as they are less likely to cause problems
with screen readers (Kane & Bigham, 2014). In their study, Kane and Bigham also considered Python, as it
meets most of the previously mentioned criteria, however it also uses white space which could be confusing
when used with a screen reader. During the course of their study, which took place over a week and involved 12
VI learners, Kane and Bigham found that the students were successful in writing programs in Ruby, however the
mispronunciation of some of the terms by the screen reader caused minor challenges.

There are text-based languages that have been designed specifically for VI users, for example the APL (Audio
Programming Language) for example, was developed by VI learners for VI learners (Sánchez & Aguayo, 2006).
APL features a reduced set of commands which can be accessed and selected through a circular command list,
with no requirement to memorise commands. The results of a small usability study of APL indicate that the
language enables learners to understand programming concepts and apply them.

In 2011, Stefik et al. conducted an exploratory study to evaluate the accessible programming environment
Sodbeans, along with the Hop programming language, which they developed. Sodbeans is aimed at middle and
high school students and makes use of audio cues for navigation along with an auditory debugger for the Hop
programming language. The findings from the evaluation indicate an increase in learner self-efficacy after
participation in a programming workshop that employed Sodbeans and Hop.
The Hop programming language was developed further, becoming Quorum, a language designed for all, while
still being accessible to VI learners (Stefik et al., 2011). The development of Quorum was informed by empirical
studies investigating the intuitiveness of the syntax of different languages and the accuracy rates of novice
programmers using them (Stefik & Siebert, 2013).

3.1.3 Code Navigation
A common theme that occurs among the literature is the difficulty VI learners have navigating their code and
understanding the overall structure when using a screen reader (Bigham et al., 2008; Kane & Bigham, 2014;
Ludi et al., 2014). This can often result in learners inserting code in the incorrect position. There are steps that
can be taken to mitigate these difficulties; in order to gain a better understanding of their position in the code,
learners can be encouraged to move the text cursor in order to hear the characters read out. In addition, learners
can also be provided with code samples in braille to help them develop an understanding of the overall structure
of the code.

The challenge of navigating the code and understanding its structure was considered during the development of
StructJumper, a plugin for the Eclipse programming environment which enables VI users to navigate through a
program written in Java (Baker et al., 2015). StructJumper generates a tree that is made up of the nested
structures contained within the program, this enables the user to easily jump between each nested structure in the
code. The participants that took part in a small-scale evaluation of StructJumper found that it helped them speed
up their navigation through the code.

3.1.4 Other Considerations

It is also important to consider that the level of vision among VI learners will vary considerably, as will their
preferred assistive technologies (Bigham et al., 2008; Ludi et al., 2014). Experience with assistive technologies

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 6

may also vary. Bigham et al. (2008) found that students that were already proficient in the use of a screen reader
were the most successful. Another factor that can impact on progress of VI learners is their familiarity with
keyboard layout, with typing skills also being identified as an important skill for learning to program in a
text-based language (Ludi, 2013; Ludi et al., 2014).

Another factor to be considered is the accessibility of tools designed to create graphical user interfaces (GUIs),
as existing tools that are employed to generate GUIs are either not accessible or very challenging to use for VI
learners. In order to address this issue Siegfried (2006) developed a scripting language to enable VI programmers
to produce Visual Basic Forms. More recently, Konecki (2014) developed GUIDL, a tool that enables VI
learners to create GUIs for their programming projects. GUIDL was evaluated by a small group of adult novice
programmers who found they were able to use the tool to successfully create GUIs that could be used in their
own programs.

Although there are a number of studies focusing on teaching VI learners to program in a text-based language
(TBL), these mainly focus on high school and undergraduate students. The following section will look at the
accessibility of (BBLs), which are targeted at students in primary school.

3.2 Making Block-Based Languages Accessible

When learning how to program a significant amount of time is spent learning the syntax of a specific language;
this can potentially hinder the development of an understanding of the core programming concepts. BBLs such
as Scratch (Maloney et al., 2010) enable learners to develop programs by snapping blocks together, removing the
need for them to learn the complex syntax of a TBL.
BBLs are intrinsically visual and are therefore not accessible to most VI learners. There is a need for an
alternative to BBLs such as Scratch (Koushik & Lewis, 2016; Ludi, 2015). One such alternative is Noodle, a
programming system for creating sound and music that has program elements which can be inserted and
arranged purely using keyboard commands (Lewis, 2014). The concept of Noodle is promising; however, it does
not appear to have been trialed with learners and the language used in the audio feedback is not appropriate for
primary school children. This makes it an unsuitable choice for the introduction of programming to young VI
children.

Ludi (2015) and her team have been working on making the Blockly language accessible to VI learners. The
language that Ludi and her team are developing will enable navigation purely by keyboard and also incorporate
audio cues in order to communicate the level of nesting. Following on from the work on Noodle, Lewis has been
working with Koushik in the development of another accessible Blockly-based language called the Pseudospatial
Blocks (PB) language (Koushik & Lewis, 2016). Pseudospatial refers to the distorted nature of the geometry of
movement. In PB the learner selects an insertion point using the keyboard and they can select the program
element they want from a filtered list; the program elements are filtered by syntactic category. Koushik and
Lewis (2016) argue that PB has advantages over visual languages for all learners as invalid program blocks for a
given space are filtered out.

The Lady Beetle and World of Sounds programming environments are alternatives to BBLs that were developed
in order to introduce young VI children to the basic concepts of programming (Jašková & Kaliaková, 2014). The
Lady Beetle programming environment enables the learner to select single word commands, without having to
type them. These commands control the movement of a beetle across a grid. As the beetle moves, the coordinates
of the current square are read out. World of Sounds, on the other hand, enables learners to create simple
programs that produce sequences of sounds.
The development of these accessible BBL alternatives is a promising step forward in the quest to find an
accessible alternative to block-based languages, however they could still present learners with difficulties
gaining an understanding of the overall structure of their code when using a screen reader. The table shown in
appendix A demonstrates that there is still some way to go for BBL research to catch up with TBLs.

3.3 Physical Artefacts
3.3.1 Programmable Devices

The physical nature of programmable devices such as robots make them a common tool for the teaching of
introductory programming and it is has been shown to be just as appealing to VI learners (Ludi, 2013). When
teaching computing with robotics, the robots can either be pre-assembled or learners can be required to build

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 7

their own robots as part of the learning process. This has its own challenges, particularly for VI learners.

Dorsey Rayshun, Chung Hyuk, & Howard (2014) conducted an evaluation of four educational robotics kits
during a series of summer workshops, which investigated their suitability for use with VI learners. In each
workshop the VI learners were paired with a sighted buddy and tasked with building robots using the various kits.
The LEGO Mindstorm RCX was found to be the easiest for VI learners to work with, requiring the least support
from their sighted buddies.

A number of studies have been conducted, which investigate outreach programs designed to increase
participation of VI students in computing using robotics (Dorsey et al., 2014; Ludi, 2013; Ludi et al., 2014; Ludi
& Reichlmayr, 2011). The findings of these studies indicate that after the workshops the confidence level of the
students in programming improved, as did their desire to take computing in school or pursue it as a career.

3.3.2 Physical Programming Languages

Most systems used in physical computing, whilst being physical themselves are still programmed using a GUI on
a computer. In physical programming languages (PPLs), commands are represented by physical objects which
can be joined together to create programs. The Tern PPL uses wooden blocks that can be joined together in order
to construct programs. A webcam is used to convert physical into digital code (Horn & Jacob, 2007a, 2007b).
Tern was initially evaluated over the period of one week with nine sighted children. The children used Tern to
program robots, not all of them were able to understand the effect of their programs on the robot. This may be
partially down to the delay between code creation and execution as it has to be converted to digital code using a
webcam connected to a computer.
The physical nature of physical programming languages means they have the potential to be a powerful learning
tool for VI children, howeverTern itself is not accessible. On the other hand there is Torino, a physical
programming language that is designed to be inclusive of VI learners (Thieme et al., 2017). Torino features pods
which can be joined together to create programs that produce sound and music. Each pod features dials, which
act as parameters and enable the learner to change the sound sample or note and the duration. The physical
nature of Torino programs could potentially enable the learner to gain an overall of the structure of the whole
program.

3.3.3 3D Models
It is common practice for computing teachers to use diagrams, graphics or animations to illustrate programming
concepts such as data structures, “most tools used to teach data structures, algorithmic thinking and basic
programming are visually oriented” (Papazafiropulos et al., p. 491). While assistive technologies enable VI
learners to access information, they are unable to present a complex concept in a simple form in the same way a
visual representation can.

3D models can be used to represent abstract concepts in a way that is accessible to VI learners. As part of their
research Stefik et al. (2011) interviewed teachers in one school for VI children and found that where possible
new concepts should be introduced through the use of physical objects. In response to this, they developed
‘manipulatives’ for teaching key programming concepts, such as variables. Jašková & Kaliaková (2014) used a
tactile table consisting of a 10x10 grid to teach VI children how to write simple algorithms. The children were
given the task to write a sequence of commands in a text editor that guided a bee to follow a pre-set path through
the tactile grid. The learners would simulate the execution of the program by moving the bee with their hands.

With the advent of 3D printers, 3D models have become much easier to produce. Papazafiropulos et al. (2016)
used 3D printed models in a small feasibility study to teach concepts such as data structures and algorithms to VI
children. The model they used features cylinders of varying heights, with the height representing the value of the
element. The cylinders slot into a tray which represents the array. It was used to teach how sorting and searching
algorithms could be applied to arrays.
3D printing was also used by Kane & Bigham (2014) as part of a week-long programming workshop, in which
children produced code to generate physical visualizations of data. They found that the ability to generate and
print their own tactile maps was extremely engaging for the children, however, the speed of 3D printing was a
limitation as they had to be printed overnight. They also identified the need for universal tools that can be used to
easily create tactile graphics.

Lego provides a quick and simple method of producing basic 3D models for use in the teaching of programming

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 8

concepts to VI learners. Capovilla et al. (2013) discovered this when they employed Lego models in the teaching
of sorting and searching algorithms to a small group of adult VI learners. Once the learners had familiarized
themselves with the algorithms using the Lego models, they were then asked to solve sorting and searching tasks
in a spreadsheet. All participants were able to complete the assigned tasks.

3.4 Auditory and Haptic Feedback
Sounds that vary in tone and pitch can be used to indicate the different states of a physical object or virtual
representation, as can haptic feedback in the form of vibrations. PLUMB EXTRA (EXploring data sTRuctures
using Audible Algorithm Animation) was developed to enable VI undergraduate students to access simulations
of algorithms designed to manipulate data structures (Calder et al., 2007). It is based on PLUMB, a system
designed to enable VI learners navigate graphs (Calder et al., 2006). The PLUMB EXTRA system enables
learners to explore the state of data structures at any point using a series of audio cues. In the Calder et al. (2007)
study, the development of the system is described; however, the evaluation of the system is limited.

During a series of workshops, Dorsey et al. (2014) made use of different piano notes and vibrations in a Wii
remote in order to indicate the different states of a robot while navigating a maze. The results are this study
indicate that if sufficient haptic and auditory feedback is provided, VI learners are able to perform tasks that are
considered to be highly visual.

4. Discussion

This review has demonstrated the dominance of TBLs in the literature, this is despite the fact that in primary
computing education BBLs are most prevalent, as highlighted by the recent Royal Society Report (The Royal
Society, 2017). According to the national curriculum (Department for Education, 2014), all children in England
should learn the basic concepts of programming from the age of 5. However, the inherent inaccessibility of
BBLs, along with their widespread use in primary computing lessons can lead to VI learners being excluded
from programming lessons. Initial steps have been taken towards making BBLs accessible to VI learners,
however there is still a long way to go and more research is needed.
Research relating to the use of TBLs with VI learners has identified the difficulty learners can have in gaining an
understanding of the overall structure of their code as can they only listen to one line of code at a time, putting a
heavy reliance on short term memory. Even though it has been shown that it is possible to make BBLs accessible
to VI learners, this difficulty could still present a barrier for learners. PPLs, on the other hand, could potentially
enable VI learners to develop an understanding of the structure of the code through touch, as long as the
individual blocks or elements used in the PPL are physically different. Therefore, the use of PPLs with VI
learners needs to be investigated in terms of learning processes and possible benefits.

The literature relating to TBLs has identified a number of potential challenges for VI learners in addition to
possible strategies to overcome them. This research can be used to inform the teaching of programming to
high-school VI learners, however more research is still required. If VI learners are successfully introduced to
programming in primary school through PPLs or accessible BBLs, they will enter high-school understanding the
basic concepts. This could potentially smooth the transition to TBLs and as a result possibly reduce the
significance of some of the challenges currently associated with TBLs. This highlights the urgent need for
research into strategies for making programming accessible to primary VI learners.

5. Conclusion

Much of the research carried out in this space to date focuses on the development of interventions and their
impact on student perceptions and engagement, with limited attention given to the pedagogy of teaching
programming to VI learners. This is certainly an area that warrants further research.
Currently the most popular languages for introductory programming in primary schools in the UK are
block-based (The Royal Society, 2017), which are currently not accessible to VI learners. Therefore, there is a
need for further investigation into potential accessible alternatives to BBLs, PPLs are a promising candidate
given their potential to enable learners to gain an understanding of the overall structure of their code.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 9

6. Summary

A range of studies have investigated ways in which learning text-based languages can be made accessible to VI
learners (Bigham et al., 2008; Dorsey et al., 2014; Kane & Bigham, 2014; Ludi, 2013; Ludi et al., 2014; Ludi &
Reichlmayr, 2011; Smith et al., 2000; Stefik et al., 2011), however, these have focused mainly on high school
and undergraduate students. Block-based languages have also been examined, with the aim of making them
accessible to VI learners (Koushik & Lewis, 2016; Lewis, 2014). Pseudospacial Blocks (PB) is a promising
development, which is more suited to the needs of VI learners in primary education. It should be noted however,
that it could be challenging for learners to gain an understanding of the overall structure of their code when using
PB, as is the case with text-based languages.

Physical artefacts can be employed to engage sighted and VI learners alike, the use robotics is one such example
(Dorsey et al., 2014; Ludi, 2013; Ludi et al., 2014; Ludi & Reichlmayr, 2011). The drawback of this approach is
that it currently still relies on TBLs, bringing with them their own complications, which have based discussed
previously. PPLs, on the other hand have the potential to be a powerful tool in the teaching of programming to
VI learners in primary education, combining the physical with the facility to gain an understanding of the overall
structure of a program.

3D models (Kane & Bigham, 2014; Papazafiropulos et al., 2016; Stefik et al., 2011) along with auditory and
haptic feedback (Calder et al., 2007; Dorsey et al., 2014) have been shown to be useful aids in the teaching
process, however they cannot be used to teach programming in isolation and need to be combined with other
strategies.

7. Guidelines

Drawing on the literature, a set of guidelines has been produced for educators and developers working with VI
learners. It should be noted, however that these guidelines are based on the literature that is currently available
and may change as the field develops and more evidence is gathered.

1. Accessible physical programming languages may be a suitable alternative to block-based languages
when introducing young VI children to programming.

2. Simple programming concepts can be taught to young VI children using 3D artefacts, for example
writing an algorithm to move a bee in a tactile grid.

3. When teaching with text-based programming languages, the choice of language is important. Either
choose a language that is specially designed for VI learners, or a general-purpose language with simple
syntax and limited use of non-alphanumeric characters, for example Ruby.

4. Ensure you choose a programming environment that is fully accessible and easy to navigate using a
screen reader. If an appropriate environment is not available, a plain text editor can be used, although
the lack of debugging tools can be challenge.

5. Abstract concepts that are usually taught using visual representations can often be effectively taught to
VI learners using 3D artefacts. For example, teaching data structures using different sized cylinders that
slot into a tray.

6. VI learners often struggle to gain an overall understanding of the structure of code written in text-based
languages, one support strategy is to provide example code in Braille (for braillists).

7. Choosing an appropriate theme for programming activities can make them accessible and engaging for
VI learners. For example, tasks that involve programming a physical device, such as a robot can be very
engaging. However, it is important to provide positional information for the robot in non-visual forms,
this can include the use of auditory and haptic feedback.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 10

References
Albusays, K., & Ludi, S. (2016). Eliciting programming challenges faced by developers with visual impairments.

In Proceedings of the 9th International Workshop on Cooperative and Human Aspects of Software
Engineering - CHASE ’16 (pp. 82–85). Austin, TX, USA. https://doi.org/10.1145/2897586.2897616

Baker, C. M., Milne, L. R., & Ladner, R. E. (2015). StructJumper. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems - CHI ’15 (pp. 3043–3052). New York, New York,
USA: ACM Press. https://doi.org/10.1145/2702123.2702589

Bigham, J. P., Aller, M. B., Brudvik, J. T., Leung, J. O., Yazzolino, L. a., & Ladner, R. E. (2008). Inspiring blind
high school students to pursue computer science with instant messaging chatbots. ACM SIGCSE Bulletin,
40(1), 449. https://doi.org/10.1145/1352322.1352287

Calder, M., Cohen, R. F., Lanzoni, J., Landry, N., Skaff, J., Calder, M., … Skaff, J. (2007). Teaching data
structures to students who are blind. In Proceedings of the 12th annual SIGCSE conference on Innovation
and technology in computer science education - ITiCSE ’07 (Vol. 39, p. 87). New York, New York,
USA: ACM Press. https://doi.org/10.1145/1268784.1268811

Calder, M., Cohen, R. F., Lanzoni, J., & Xu, Y. (2006). PLUMB: An interface for Users who are Blind to
Display, Create, and Modify Graphs. In Proceedings of the 8th international ACM SIGACCESS
conference on Computers and accessibility - Assets ’06 (p. 263). New York, New York, USA: ACM Press.
https://doi.org/10.1145/1168987.1169046

Capovilla, D., Krugel, J., & Hubwieser, P. (2013). Teaching Algorithmic Thinking Using Haptic Models for
Visually Impaired Students. In 2013 Learning and Teaching in Computing and Engineering (pp. 167–171).
IEEE. https://doi.org/10.1109/LaTiCE.2013.14

Cheong, C. (2010). Coding without sight: Teaching object-oriented java programming to a blind student. In
Eighth Annual Hawaii International Conference on Education (pp. 1–12). Hawaii International
Conference on Education. Retrieved from http://researchbank.rmit.edu.au/view/rmit:13231

Department for Education. (2014). The national curriculum in England - Framework document. Department for
Education. Retrieved from
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/381344/Master_final_nation
al_curriculum_28_Nov.pdf

Dorsey, R., Chung, H. P., & Howard, A. (2014). Developing the Capabilities of Blind and Visually Impaired
Youth to Build and Program Robots. In 28th Annual International Technology and Persons with
Disabilities Conference. San Diego: California State University, Northridge. Retrieved from
http://scholarworks.csun.edu/handle/10211.3/121965

Francioni, J. M., & Smith, A. C. (2002). Computer science accessibility for students with visual disabilities. In
Proceedings of the 33rd SIGCSE technical symposium on Computer science education - SIGCSE ’02 (Vol.
34, p. 91). New York, New York, USA: ACM Press. https://doi.org/10.1145/563340.563372

Franqueiro, K. G., & Siegfried, R. M. (2006). Designing a scripting language to help the blind program visually.
In Proceedings of the 8th international ACM SIGACCESS conference on Computers and accessibility -
Assets ’06 (p. 241). New York, New York, USA: ACM Press. https://doi.org/10.1145/1168987.1169035

Horn, M. S., & Jacob, R. J. K. (2007a). Designing tangible programming languages for classroom use. In
Proceedings of the 1st international conference on Tangible and embedded interaction - TEI ’07 (p. 159).
New York, New York, USA: ACM Press. https://doi.org/10.1145/1226969.1227003

Horn, M. S., & Jacob, R. J. K. (2007b). Tangible programming in the classroom with tern. In CHI ’07 extended
abstracts on Human factors in computing systems - CHI ’07 (p. 1965). New York, New York, USA:
ACM Press. https://doi.org/10.1145/1240866.1240933

Howard, A. M., Chung Hyuk Park, & Remy, S. (2012). Using Haptic and Auditory Interaction Tools to Engage
Students with Visual Impairments in Robot Programming Activities. IEEE Transactions on Learning
Technologies, 5(1), 87–95. https://doi.org/10.1109/TLT.2011.28

Jašková, Ľ., & Kaliaková, M. (2014). Programming Microworlds for Visually Impaired Pupils. In G. Futschek &
C. Kynigos (Eds.), Proceedings of the 3rd international constructionism conference. Vienna. Retrieved
from http://constructionism2014.ifs.tuwien.ac.at/papers/2.7_2-8251.pdf

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 11

Kane, S. K., & Bigham, J. P. (2014). Tracking @stemxcomet. In Proceedings of the 45th ACM technical
symposium on Computer science education - SIGCSE ’14 (pp. 247–252). New York, New York, USA:
ACM Press. https://doi.org/10.1145/2538862.2538975

Konecki, M. (2014). GUIDL as an Aiding Technology in Programming Education of Visually Impaired. Journal
of Computers, 9(12), 2816–2821. https://doi.org/10.4304/jcp.9.12.2816-2821

Koushik, V., & Lewis, C. (2016). An Accessible Blocks Language. In Proceedings of the 18th International
ACM SIGACCESS Conference on Computers and Accessibility - ASSETS ’16 (pp. 317–318). New York,
New York, USA: ACM Press. https://doi.org/10.1145/2982142.2982150

Lewis, C. (2014). Work in Progress Report: Nonvisual Visual Programming. In Proceedings of the 25th
Psychology of Programming Annual Conference (PPIG 2014). Retrieved from www.ppig.org

Ludi, S. (2013). Robotics Programming Tools for Blind Students. In 28th Annual International Technology and
Persons with Disabilities Conference. San Diego: California State University, Northridge. Retrieved from
http://scholarworks.csun.edu/handle/10211.3/121968

Ludi, S. (2015). Position paper: Towards making block-based programming accessible for blind users. In 2015
IEEE Blocks and Beyond Workshop (Blocks and Beyond) (pp. 67–69). IEEE.
https://doi.org/10.1109/BLOCKS.2015.7369005

Ludi, S., Ellis, L., & Jordan, S. (2014). An accessible robotics programming environment for visually impaired
users. In Proceedings of the 16th international ACM SIGACCESS conference on Computers &
accessibility - ASSETS ’14 (pp. 237–238). New York, New York, USA: ACM Press.
https://doi.org/10.1145/2661334.2661385

Ludi, S., & Reichlmayr, T. (2011). The Use of Robotics to Promote Computing to Pre-College Students with
Visual Impairments. ACM Transactions on Computing Education, 11(3), 1–20.
https://doi.org/10.1145/2037276.2037284

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Language
and Environment. ACM Transactions on Computing Education, 10(4), 1–15.
https://doi.org/10.1145/1868358.1868363

Papazafiropulos, N., Fanucci, L., Leporini, B., Pelagatti, S., & Roncella, R. (2016). Haptic Models of Arrays
Through 3D Printing for Computer Science Education. In International Conference on Computers Helping
People with Special Needs (pp. 491–498). Springer, Cham. https://doi.org/10.1007/978-3-319-41264-1_67

Raman, T. V. (1996). Emacspeak---direct speech access. In Proceedings of the second annual ACM conference
on Assistive technologies - Assets ’96 (pp. 32–36). New York, New York, USA: ACM Press.
https://doi.org/10.1145/228347.228354

Remy, S. L., & L., S. (2013). Extending access to personalized verbal feedback about robots for programming
students with visual impairments. In Proceedings of the 15th International ACM SIGACCESS Conference
on Computers and Accessibility - ASSETS ’13 (pp. 1–2). New York, New York, USA: ACM Press.
https://doi.org/10.1145/2513383.2513384

Sánchez, J., & Aguayo, F. (2005). Blind learners programming through audio. In CHI ’05 extended abstracts on
Human factors in computing systems - CHI ’05 (p. 1769). New York, New York, USA: ACM Press.
https://doi.org/10.1145/1056808.1057018

Sánchez, J., & Aguayo, F. (2006). APL: Audio Programming Language for Blind Learners. In K. Miesenberger,
J. Klaus, W. L. Zagler, & A. I. Karshmer (Eds.), Computers Helping People with Special Needs. ICCHP
2006. Lecture Notes in Computer Science (4061st ed., pp. 1334–1341). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11788713_192

Siegfried, R. M. (2006). Visual programming and the blind: The Challenge and the Opportunity. In SIGCSE ’06
Proceedings of the 37th SIGCSE technical symposium on Computer science education (Vol. 38, pp. 275–
278). Houston, Texas: ACM. https://doi.org/10.1145/1124706.1121427

Siegfried, R. M., Diakoniarakis, D., Franqueiro, K. G., & Jain, A. (2005). Extending a scripting language for
visual basic forms. ACM SIGPLAN Notices, 40(11), 37. https://doi.org/10.1145/1107541.1107547

Smith, A. C., Francioni, J. M., & Matzek, S. D. (2000). A Java programming tool for students with visual
disabilities. In Proceedings of the fourth international ACM conference on Assistive technologies -
Assets ’00 (pp. 142–148). New York, New York, USA: ACM Press.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 12

https://doi.org/10.1145/354324.354356

Stefik, A., Alexander, R., Patterson, R., & Brown, J. (2007). WAD: A Feasibility study using the Wicked Audio
Debugger. In 15th IEEE International Conference on Program Comprehension (ICPC ’07) (pp. 69–80).
IEEE. https://doi.org/10.1109/ICPC.2007.42

Stefik, A., Hundhausen, C., & Smith, D. (2011). On the design of an educational infrastructure for the blind and
visually impaired in computer science. In Proceedings of the 42nd ACM technical symposium on
Computer science education - SIGCSE ’11 (p. 571). New York, New York, USA: ACM Press.
https://doi.org/10.1145/1953163.1953323

Stefik, A., & Siebert, S. (2013). An Empirical Investigation into Programming Language Syntax. ACM
Transactions on Computing Education, 13(4), 1–40. https://doi.org/10.1145/2534973

Stefik, A., Siebert, S., Stefik, M., & Slattery, K. (2011). An empirical comparison of the accuracy rates of
novices using the quorum, perl, and randomo programming languages. In Proceedings of the 3rd ACM
SIGPLAN workshop on Evaluation and usability of programming languages and tools - PLATEAU ’11 (p.
3). New York, New York, USA: ACM Press. https://doi.org/10.1145/2089155.2089159

The Royal Society. (2017). After the reboot: computing education in UK schools. Retrieved from
https://royalsociety.org/~/media/policy/projects/computing-education/computing-education-report.pdf

Thieme, A., Morrison, C., Villar, N., Grayson, M., & Lindley, S. (2017). Enabling Collaboration in Learning
Computer Programing Inclusive of Children with Vision Impairments. In Proceedings of the 2017
Conference on Designing Interactive Systems - DIS ’17 (pp. 739–752). New York, New York, USA:
ACM Press. https://doi.org/10.1145/3064663.3064689

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 13

Appendix A: Literature Cross-Referenced by Theme

 Making Text-Based
Languages
Accessible

Making
Block-Based
Languages
Accessible

Physical
Artefacts

Auditory and
Haptic

Feedback

(Bigham et al., 2008) x

(Kane & Bigham, 2014) x x

(Cheong, 2010) x

(Smith et al., 2000) x

(Francioni & Smith, 2002) x

(Ludi & Reichlmayr, 2011) x x

(Dorsey et al., 2014) x x x

(Ludi, 2013) x x

(Ludi et al., 2014) x x

(Sánchez & Aguayo, 2005) x

(Sánchez & Aguayo, 2006) x

(Andreas Stefik, Siebert, et al.,
2011)

x

(Andreas Stefik, Hundhausen, et
al., 2011)

x x

(Andreas Stefik & Siebert, 2013) x

(Konecki, 2014) x

(Baker et al., 2015) x

(Siegfried, Diakoniarakis,
Franqueiro, & Jain, 2005)

x

(Franqueiro & Siegfried, 2006) x

(Siegfried, 2006) x

(A. Stefik et al., 2007) x

(Lewis, 2014) x

(Ludi, 2015) x

(Koushik & Lewis, 2016) x

(Thieme et al., 2017) x

(Papazafiropulos et al., 2016) x

(Capovilla et al., 2013) x

(Calder et al., 2007) x

(Calder et al., 2006) x

(Howard, Chung Hyuk Park, &
Remy, 2012)

x x x

(Jašková & Kaliaková, 2014) x x x

(Remy & L., 2013) x

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 14

Exploring the Use of Self-Regulation Strategies in Programming with

Regard to Learning Styles
Ünal	Çakiroğlu	1	

Betül	Er2	

Nursel	Uğur3	

Esra	Aydoğdu3	
	

1Karadeniz	Technical	University	
2Agri	University	

3Ministry	of	Education	

DOI: 10.21585/ijcses.v2i2.29
Abstract

This study attempts to understand the relationship between learning styles and self-regulated learning of
pre-service computer teachers in a programming course. Students’ strategies for self-regulation with regard to
their learning styles were assessed on the basis of qualitative data in terms of programming course. The Turkish
version of Felder-Soloman learning style inventory was used to identify the students’ learning styles and
interviews were conducted to evaluate students’ SRL strategies in programming. The results suggest that the
characteristics of learning styles are somewhat related to self-regulation strategies. Time management was
identified as a leading self-regulation strategy among learning styles, while shortcomings regarding target setting
and self-efficacy strategies were prominent with almost all learning styles. Characteristics of other
self-regulation strategies do not directly match with expected behaviors of learning styles in the context of
learning programming. It is hoped that the study may shed light for instructors and instructional designers to
design more appropriate settings for teaching programming taking learning styles in to consideration.

Keywords: self-regulated learning, learning styles, programming

1. Introduction

Computer programming is considered as a challenging course given the extensive set of knowledge and skills
through the years (Bennedsen and Caspersen, 2008). Researchers often addressed that students struggle in the
transition from introductory level programming to more advanced level. This is because in programming
learning processes, students need to use various cognitive and metacognitive strategies to control and regulate
their own learning (Brennan and Resnick, 2012; Hwang, Liang, and Wang, 2016). Numerous studies indicated
that learning programming cannot be confined in the classroom only, and emphasize the need for applicable
work for outside the classroom (Azevedo and Hadwin, 2005; Kozlowski and Bell, 2006; Wiedenbeck, LaBelle
and Kain, 2004). Accordingly, investigating metacognitive processes underlying the learning programming has
gained more attention. Thus, prior work in teaching programming pedagogy has focused on some problem
solving strategies and techniques for overcoming difficulties in teaching programming (Lau and Yuen, 2011;
Nam, Kim and Lee, 2010; Saeli et al., 2011).
In this circumstance, some researchers address greater involvement in the learning process and students’
responsibility in their learning (Akpınar and Altun, 2014; Lye and Koh, 2014). In order to manage their
learning; Self-regulated Learning (SRL) enables students to be active in the learning process while developing
programming skills (Zimmerman, 2008). In this circumstance, specific SRL strategies are required to perform
the programming tasks (Armstrong, 1989). It is evident that students who use these strategies can perform high
in the process of learning programming (Alharbi et al., 2014; Falkner et al., 2014). Since programming requires

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 15

self-regulation, many efforts are ongoing about developing self-regulation for programming. In this context,
perspectives about how SRL arise in learning programming are discussed in the following section.

1.1. Self-Regulation in Programming	
SRL allows students to be active and to direct their learning (Fernández et al., 2012; Zimmerman, 2002).
Researchers have reached a consensus that students’ SRL strategies have been positively related to their
achievements (Artino, 2008; Artino, 2009; Lee, Shen, and Tsai, 2010; Liaw and Huang, 2013; Paechter, Maier
and Macher, 2010; Pintrich, 2000; Puzziferro, 2008; Wang, Shannon and Ross, 2013). In general, the activities
in the learning processes are considered as mediators between students, contexts, and achievement within SRL
strategies (Pintrich, 2004). Safari and Hejazi (2017) argued that self-regulated learners can get advantage of their
own learning because they know how to apply the acceptable actions in order to reach the goals. In the
educational context; SRL strategies are seen in the dimensions of self-evaluation, organization, and
transformation; goal setting and planning; seeking information, keeping records, and monitoring; environment
structuring; self-consequences; rehearsing and memorizing; seeking social assistance; and reviewing records are
used (Pintrich and DeGroot, 1990; Schunk and Zimmerman, 1998; Zimmerman, 2002; Zimmerman and
Martinez-Pons, 1990).

In programming learning domain self-regulation arguably plays a key role in facilitating the development of
major skills of problem solving such as logical thinking and reasoning, and helps students to manage their
learning process during programming (Ramalingam, LaBelle and Wiedenbeck (2004). Some studies suggest that,
self-regulated learners can find a number of ways to achieve the goals in programming learning process (Bergin,
Reilly and Traynor 2005; Kumar et al. (2005). In this sense, some recent studies suggest planning,
self-evaluation and self-monitoring (Falkner, Vivian, and Falkner, 2014; Falkner, Szabo, Vivian, and Falkner,
2015; Li, Ko, and Zhu, 2015) are prominent strategies to achieve learning objectives in programming. Also,
self-efficacy is considered as one of the main strategies of SRL which keeps students on track in learning
programming (Kuo, Wu and Lin, 2013; Ramalingam et al., 2004; Wiedenbeck, 2005). Self-satisfaction is
another factor which is emphasized by Kuo, Wu and Lin (2013) in their model. In addition, a recent study
suggests that designing instruction through self-regulation skills for programming courses enhances problem
solving skills (Loksa et al., 2016).

On the other hand; Hui and Umar (2010) highlighted some individual characteristics, such as learning styles and
Wiedenbeck (2005) addressed previous programming experience and knowledge of organization were also
important for learning programming. The fact that learning styles as processing information can certainly affect
students’ progress and their programming performances. In this context, the recent studies frequently reference
to learning styles to understand the progression in learning programming.
	
1.2. Learning Styles in Programming	
Safari and Hejazi (2017) point out that one of the learning obstacles in classroom is the lack of coordination
between the instructional methods and the learning styles. Learning styles which are related to the way of
students’ information processing skills may influence to the student’s performance in introductory programming’
(Norwawi, Abdusalam, Hibadullah, and Shuaibu; 2009). When students are aware of their own different styles,
they can learn better. Research studies indicate that matching learning styles with teaching methods provide high
academic achievements. For instance, Alharbi et al. (2011) reported that some of the students in computer
science programs are not aware of their SRL, and that they do not know how to apply SRL strategies in the
learning process. Some other studies indicated that students with different learning styles prefer to use different
SRL strategies (Shannon, 2008) and stating a relationship between SRL and learning styles may promote
learning on the part of students (Safari and Hejazi, 2017). It can be considered that in the process of learning
programming, students with different learning styles may follow or develop different self-regulation strategies.
Thus, instructors should create authentic learning environments by being familiar with individual students’
learning styles.

1.3. Considering SRL with regard to Learning Styles

It is known that student- centred educational paradigms place a high level of responsibility on learners to control
and regulate their personal learning processes. It is also crucial to take individual differences into consideration
in instructional processes (Das, 2015). Emphasizing the responsibility students’ own learning, Paris and

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 16

Winograd (2001) suggest promoting self-regulatory learning strategies. Being aware of the students’ learning
styles, teachers could help them to know their learning habits, and help them to apply better learning strategies
within this responsibility. Since in problem solving in problem solving process acquired by self-regulated
strategies (Zhang et al,2006), learning style as the characteristic cognitive, affective and psychological behaviors
may serve as how learners perceive, interact with and respond to the learning environment (Keefe, 1988). Thus,
within the student-centred paradigm, understanding students’ preferences and the self-regulated learning
strategies together may facilitate their learning process. In a study focusing on the relationships between SRL
and learning style, Man-Chih, (2006) documented that since self-regulation provides learners with a role in
decision-making; it is in an accord with converging learners’ styles. Lavasani et al (2011) also found
self-regulated learners using metacognitive strategies to get advantage of learning process which is in line with
the feature of the diverging learners. Gülbahar (2005) referring to the SRL, argued that any student can adapt
learning processes, activities and techniques, if he/she is able to understand his/her own learning styles and also
be aware of his experiences.

1.4. Aim of the Study
While prior work has investigated many aspects of programming in terms of the role of self-regulation, more
detailed investigation of the relationship between self-regulated learning and learning styles in the field of
programming is needed. In order to facilitate learning, instructors should provide an easy way for students to
discover their own characteristics. Thus, exploring the self-regulatory mechanisms regarding the learning styles
would reveal the nature of psychological processes essential to the initiation, maintenance, and may be
termination of learning in programming. So, this paper is hoped to contribute to understanding the relationships
between learning styles and self-regulated learning strategies in the field of programming in higher education.

In line with the overall purpose of the study, the following research question was directed: How students’
self-regulation strategies differentiate in terms of their learning styles in the context of programming learning
process?

2. Method	
A Turkish version of the Felder-Soloman’s learning style inventory (LSI-T) coupled with a semi structured
interview was applied to answer the research questions. The results from the interviews were then categorized
and interpreted regarding the students’ learning styles.

2.1. Participants

The study was carried out in a programming language course at the Computer and Instructional Technologies
Department of a major university in Turkey. The participants were 57 pre-service computer teachers (29 male,
28 female) between the ages of 18 and 24. The participants have basic computer literacy skills, and limited prior
programming knowledge. It was the first time they were receiving an introductory programming course. After,
determining the learning styles of all students, 8 students (4 male 4 female) from all learning styles were
interviewed.

2.2. Instrumentation	
2.2.1. LSI-T
To identify students’ learning styles, the Turkish language version of Felder and Soloman’s Index of Learning
Styles inventory was administered. Felder-Soloman index is one of the most widely used inventories in teaching
programming, reflecting the skills required for learning programming. Felder and Soloman (1998) in their
learning style model categorized learners according to four main characteristics, and classified the learning styles
as: active-reflective; sensing-intuitive; visual-verbal; and sequential-global. While active learners prefer
learning by doing or actively participating in work and prefer social interaction, reflective learners think about
the task first. It means they prefer thinking quietly about information rather than be interactively engaged in
learning activities. Intuitive learners would be more comfortable managing their own learning, so they prefer
finding learning possibilities, discovery, innovation, and abstractions. In contrast, sensing learners deal with facts
and concepts, example-based, concrete learning (Dille and Mezack 1991). In addition, verbal learners get more

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 17

out of words than from visual representations and the global learners learn in large jumps by seeking out the “big
picture” rather than learning in the traditional, sequentially organized college course.

The Index of Learning Styles (ILS) (Felder and Soloman, 1991) is a 44-question survey based on a learning style
model. The validity and reliability of the index have been verified by a number of studies (Felder and Spurlin,
2005; Litzinger et al., 2007; Zywno, 2003). One reason selecting this inventory is the potential of the inventory
for determining whether the learner has a strong, moderate, or low preference on the identifiers of the learner
styles. The index was translated into Turkish and validity and reliability analyses were provided
(Büyüköztürk, Akgün, Özkahveci and Demirel, 2004). The LSI consists of 44 two-part (‘a’ and ‘b’) items. Each
item comes with two options, where ‘a’ represents active, sensing, visual, sequential learning styles while ‘b’
suggests reflective, intuitive, verbal and global ones.

The inventory was used in previous programming teaching studies. For instance, Chen and Lin (2011) used the
inventory to identify learning styles at the beginning of programming instruction. In a similar vein, Norwawi
Abdusalam and Hibadullah (2009) applied the Felder-Soloman learning styles inventory with master’s students
prior to the beginning of the course.

2.2.2. Interviews

Semi-structured interviews were conducted to gather the perceptions about students’ SRL strategies. The
interview questions were developed on the basis of the strategies referring to the SRL definitions (Pintrich,
Smith, Garcia and McKeachie, 1991). The strategies were in relation with task value, external target orientation,
target setting, self-efficacy, self-reflection, repetition, peer learning, time management, and effort regulation.
When formulating the semi-structured interview questions, various SRL scales focusing on these strategies were
also reviewed, within the framework of the programming languages course. The selected interview questions are
presented in Appendix 1.

2.3. Data Analysis	
To find mean scores for each learning styles, instances where option ‘a’ was chosen were coded 1, and the
instances with option ‘b’ were coded 2. Referring to the original inventory mean scores in the 11 to 16 range
represent active, sensing, visual and sequential learners. On the other hand, mean scores in the 17 to 22 range
represent reflective, intuitive, verbal, and global learners (Arslan and Aksu, 2006).
The data obtained through the interviews, in turn, were analyzed through content analysis. The interviews were
transcribed into text, followed by thematic analysis based on expressions in common statements to define the
main themes. First, initial codes were identified by two coders. After examining the responses, the coders
produced tentative thematic units. Thereafter relationships, similarities and differences between the codes
assigned by both coders were reviewed and categorized, culminating in the construction of the themes in a
manner to ensure perfect concurrence among the coders, regarding the final themes. Moreover, direct quotations
in association with the learning styles were presented with special attention being paid to maintain the meaning.

3. Results	
The results are presented regarding the relationship between the learning styles and the use of self-regulation
strategies. In this context, a two-dimensional tabular presentation is used in order to express the codes related to
the strategies reflecting learning styles. Participants are assigned as Sn according to their learning styles. The
interviewed students’ perceptions about the SRL strategies in the context of the programming course were
presented in line with their different learning styles. The perceptions about the strategies used in “task value”
category are shown in Table1.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 18

Table 1. Strategies in task value category

Table 1 show that the majority of the students believe that; they will use programming experience in their
professional life, and they consider programming as the one of the basic competencies of being a computer
teacher. All students noted that programming logic is related with a number of distinct fields. A participant with
intuitive style expressed this point by saying “It can be used in a number of fields. We use the logic unwittingly,
even in our daily lives”. Only the students with active and sensing learning styles deemed the programming
course as a means to enhance intelligence, whereas those of visual and global styles did not address any
task-value point with respect to the programming course.
Students’ views regarding the “external target orientation” are presented in Table 2.

Table 2. Strategies in external target orientation category

A glance at the students’ aims and intentions associated with the programming course indicate that only sensing
and visual students intended to pass the course. Indeed, the ones with intuitive, verbal, and global styles
expressed that passing the course is their main aim with the course. The ones with reflective and sequential style
students added the ability to engage in high-level programming. In addition the active, sensing, and visual style
students noted the expectation to learning the basics of programming as well. The student with the reflective
style, in turn, mentioned the importance of writing programs without getting help.
Strategies expressed with the “target setting learning” are summarized in Table 3.

 Students’ Learning Styles

Strategies

S1.A
ctive

S2.R
eflective

S3.Sensing

S4.Intuitive

S5.V
isual

S6.V
erbal

S7.Sequential

S8.G
lobal

Task Value

Making practical use of the
profession

 √ √ √ √ √

Providing associations with
various fields

√ √ √ √ √ √ √

Considering it as a means to
enhance intelligence

√ √

Not attaching value √ √

 Students’ Learning Styles

Strategies

S1.A
ctive

S2.R
eflective

S3.Sensing

S4.Intuitive

S5.V
isual

S6.V
erbal

S7.Sequential

S8.G
lobal

External
Target

Orientation

Passing the course √ √

√

√ √ √
Engaging in high-level
programming

√

√

Learning the basics √ √ √
Developing programs with no
support

 √

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 19

Table 3. Strategies in Target Setting Category

A substantial number of the students (sensing, intuitive, visual, verbal, global) intend to complete the program
they are writing, without any bugs. Furthermore, the students with verbal style include getting ahead of the peers
and developing unique solutions. Those with the active style intend to grasp at least the logic of the program.
Sequential style student stated that she have no targets. Such targets set by students before venturing with the
program usually prevent dropping out of the endeavor prematurely.

Self-efficacy is considered one of the most important category concerning self-regulating learning. In this
context, the students’ perspectives about the strategies related to self-efficacy are expressed in Table 4.

Table 4. Strategies in self-efficacy category

Some students with global style had a preference for holistic approaches. Moreover, those with reflective and
verbal styles emphasized confidence in their ability to find distinctive solutions to the problem, while those with
the active style noted the advantages of applying common solutions. Those with intuitive, visual, and verbal
styles expressed their ability to write brief and comprehensible programs, while those with the intuitive style
exclusively referred to the ability to add a visual element. In this sense, S4 expressed that “If the program is
about a ball, the color of that ball is important for me.” The ones with the visual style, on the other hand, voiced

 Students’ Learning Styles

Strategies

S1.A
ctive

S2.R
eflective

S3.Sensing

S4.Intuitive

S5.V
isual

S6.V
erbal

S7.Sequential

S8.G
lobal

Target Setting

Completing the program

√ √ √ √

√
Getting ahead of the peers √

√

Developing different solutions

 √
Comprehending programming
logic

√

 Setting no target √

 Students’ Learning Styles

Strategies

S1.A
ctive

S2.R
eflective

S3.Sensing

S4.Intuitive

S5.V
isual

S6.V
erbal

S7.Sequential

S8.G
lobal

Self-Efficacy

Providing a holistic view for
the problem

√

Employing distinct solutions √ √
Employing common solutions √

Writing brief and
easy-to-decipher programs

 √ √ √

 Adding a visual perspective √

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 20

their confidence in perseverance in the face of problems. The student with the sensing style surprisingly did not
note any strategy regarding self-efficacy. Students’ views with respect to self-reflection are presented in Table 5.

Table 5. Strategies in Self-Reflection Category

All students noted that they experienced at least one bug when writing programs and those they checked the code
to correct them. Those with a style other than reflective, on the other hand, expressed that they got help. The one
with the sensing style expressed that “I often faced with errors. To overcome them, I either have to check the
bugs or I get help from my friends.” Other students with active, sensing, and global styles addressed that they
sometimes have difficulty in how to find appropriate programming approaches. To overcome this problem, they
noted the need to repeat certain structures. Visual and verbal style students on the other hand, referred to the
inability to take time required for programming, as the leading problem they faced, while the ones with sensing
or verbal styles expressed that they got bored when writing programs. In addition, the active style student
expressed that she would get rather avid as she noticed the shortcomings, while the one with the sensing style
noted her competence about trying different means to solutions. The views voiced with respect to repetition and
peer learning strategies are expressed in Table 6 and Table 7 respectively.

 Students’ Learning Styles

Strategies

S1.A
ctive

S2.R
eflective

S3.Sensing

S4.Intuitive

S5.V
isual

S6.V
erbal

S7.Sequential

S8.G
lobal

Self-Reflection

Reflecting bugs incurred
in the program

√ √ √ √ √ √ √ √

Forgetting programming
approaches

√ √ √

Difficulties in directing
attention

 √

Not taking time for
programming

 √ √

Getting bored √ √
Checking incorrect codes √ √ √ √
Repeating √ √
Getting help √ √ √ √ √ √ √

Trying different ways √ √
 Developing ambition √

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 21

Table 6. Strategies in repetition category

When preparing for the exam, half of the students who have distinctive learning styles (active, visual, sequential,
global) reviewed sample programs and took notes about the scripts. In this context, the student with visual style
specified that “First of all, I check the sample applications and learn about the common forms. Then I try to
write the software to understand the overall logic.” Students with intuitive, visual, and sequential styles
studied on exercises to get ready for the exams, while the rest prefer writing codes on paper. The student with
active style said that she developed similar questions and tried to solve them. Those with sensing and visual
styles memorized the pieces of scripts to prepare for the exams.

Table 7. Strategies in peer-learning category

The students with reflective and visual learning styles addressed that they tried to refrain from getting help; yet
they often get help from their peers in their efforts to solve the problems they often encounter. In addition, the
students cooperate with their peers for doing homework as with the reflective style student noted, and during
exam weeks as active sequential, and global style students mentioned.

 Students’ Learning Styles

Strategies

S1.A
ctive

S2.R
eflective

S3.Sensing

S4.Intuitive

S5.V
isual

S6.V
erbal

S7.Sequential

S8.G
lobal

Repetition

Taking notes about important
pieces of code

 √ √ √

Developing solutions on
paper

√ √ √ √ √

Reviewing sample programs √ √ √ √
Trial and error on a computer √ √ √
Developing and solving
similar questions

√

 Memorizing √ √

 Students’ Learning Styles

Strategies

S1.A
ctive

S2.R
eflective

S3.Sensing

S4.Intuitive

S5.V
isual

S6.V
erbal

S7.Sequential

S8.G
lobal

Peer Learning

Providing solutions for
errors

√ √ √ √ √ √

Doing homework √

Studying for exams √ √ √

Required no help √ √

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 22

Time-management of self-regulated strategies is generally associated with the classroom activities as well. In
this context, the perspectives regarding the time-management are presented in Table 8.

Table 8. Strategies in time management category

The students except the one with visual style noted insufficiency of the time devoted to the programming course.
The ones with visual, verbal, sequential, and global styles, in particular, pointed out the lack of any planning for
time-management for this course. The ones with reflective and intuitive styles completed the assignments right
after class, while the ones with active, sensing, and verbal styles had a preference for waiting for the last period.
Students with reflective, visual, verbal, and global styles addressed that they studied for the programming exams
only on the last day before the exam. Participant having global learning style objective was only to pass the
course, and expressed by commenting “I study for the exams on the very last day. It allows me to get a grade of
45.” Views about “effort regulation” are shown in Table 9.

Table 9. Strategies in effort regulation category

 Students’ Learning Styles

Strategies

S1.A
ctive

S2.R
eflective

S3.Sensing

S4.Intuitive

S5.V
isual

S6.V
erbal

S7.Sequential

S8.G
lobal

Time
Management

Not spending enough
time

√ √ √ √ √ √ √

No planning √ √ √ √
Completing assignments
after the class

 √ √

Performing assignments
late

√ √ √

Preparing for the exams
in last day

 √ √ √ √

 Students’ Learning Styles

Strategies

S1.A
ctive

S2.R
eflective

S3.Sensing

S4.Intuitive

S5.V
isual

S6.V
erbal

S7.Sequential

S8.G
lobal

Effort
Regulation

Having a break √ √ √ √ √ √ √
Seeking help √ √ √
Giving up completely √
Getting motivated only
with the easier parts

 √

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 23

Most of the interviewees stated that they usually took a break with programming when they face any challenges
to resume the efforts later on, while the one with the sequential style expressed that she completely gave up in
such cases. She pointed out this by saying “I demotivated and give up if I fail to solve a problem.” Moreover,
the ones with the sensing, intuitive, and verbal learning styles noted getting help to overcome issues. The verbal
style student expressed that she would be motivated by handling the easier parts of the program first, which
would motivate her for the rest of the problem. The leading strategies employed by students who have different
self-regulating learning strategies for programming course with regard to Felder and Soloman (1994) inventory
are summarized in Figure 1. The figure was developed on the basis of positive perspectives with respect to a
substantial portion of indicators concerning a given strategy. Overall, Figure 1 summarizes the perceptions about
the self-regulation strategies employed by students with different learning styles in the context of learning
programming. Also examples from active and sequential style students’ artifacts are provided in Appendix2.

Figure 1. Use of self-regulating learning strategies with reference to their learning styles

Students’ perceptions with regard to self-regulated learning strategies indicate that various learning styles are
prominent in using some strategies. Yet, the ones with visual and sequential learning styles expressed clues
about a rather limited set of indicators compared to the expressions of other students, while the ones with active
and verbal styles voiced concrete statements concerning numerous indicators. Figure 1 reveals that students with
visual, verbal, and global styles did not express any statements about the task value strategy, while the ones other
than those with the active, reflective, and sequential strategies expressed that they somewhat provide external
target orientation strategies. Furthermore, the target setting and self-efficacy strategies stand out as the ones
where the concrete statements on part of the students were rarest. Students with active, sensing, and verbal
learning styles expressed positive views about the self-reflection strategy, while students with other learning
styles voiced positive views was only about a very limited set of items. On the other hand, participants with
active, visual and global styles perceptions regarding the repetition strategy were explicitly positive. Students

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 24

with active, reflective, and global strategies expressed clues concerning numerous indicators associated with the
peer-learning strategy.
4. Discussion

Considering prior work, this study is based on the idea that students with various individual characteristics can
exhibit different self-regulation strategies during learning programming. Felder-Soloman learning styles
inventory is generally discussed with reference to four dimensions considering the similarities among the styles:
sensing/ intuitive, visual/ verbal, active/ reflective, sequential/ global. The result of this study indicated that
peer-learning and external target orientation were prominent strategies in reflective learning style, while the
sensing style students emphasized task value and self-reflection strategies. In the same vein, Das (2015) found a
significant relationship between self regulated learning and cognitive styles. Students having different learning
styles perceived in various extend of self-regulated strategies in this study. Relationships between the
characteristics of learning styles and t their perceptions about the self-regulated strategies are discussed in the
following section.

4.1. Sequential / Global

Students with a sequential learning style learn the knowledge offered, as a sequence of interrelated smaller parts.
Global learners generally need to associate new knowledge with their preliminary knowledge and experience,
before getting acquainted with the details of the topic. Sequential learners, on the other hand, can utilize specific
details without embracing the topic as a whole. But they can have problems in grasping the connections the topic
has with other fields and disciplines (Felder and Silverman, 1988). In the present study, student with sequential
learning style expressed an emphasis on task value and external target orientation strategies. Students who
employ a sequential learning style can associate the knowledge with their pre-existing knowledge. Hence, it is
only natural that the task value and external target orientation strategies are emphasized by students who have
sequential learning style, for whom motivation is considered a substantial factor in terms of self-regulating
learning strategies employed. Student having a global learning style, in her turn, had emphasized the repetition,
peer-learning and time management strategies. Also, students who have a global learning style can achieve
lasting learning by associating the new knowledge with their previous experiences. One can find an emphasis on
the repetition strategy curious for a student with global style. The repetition strategy which is based on
memorizing and global learning style is all about associating meaning through experience.

4.2. Active/Reflective

Active learning process entails interactions with the external world, such as discussing, expressing, or testing the
acquired knowledge. Active learners prefer to be engaged in physical activity, while the reflective ones choose
contemplation about knowledge offered (Felder and Silverman, 1988). In the study, the student who had active
learning style was positively perceived task value, external target orientation, self-reflection, repetition, and peer
learning self-regulating learning strategies. Since active learning style is often about considerations with the
external world, his emphasis on the external target orientation and peer learning strategies are not surprising,
through the characteristics of this style. In addition, student who had reflective learning style highlighted the task
value, external target orientation, and peer learning self-regulating learning strategies. Taking the emphasized
strategies into consideration, one can refer to a positive relation between the learning style and time
management, particularly in the light of the results observed with student with reflective learning style.

4.3. Visual / Verbal

According to Felder and Silverman (1988), the visual learners prefer to use visual elements such as images,
diagrams, schemes and presentations for the presentation of knowledge, compared to verbal statements or
written texts, while the verbal learners prefer verbal statements and written texts. In this study the student who
had a visual learning style had also found the task value and repetition self-regulating learning strategies
important. The students with a visual learning style do not need the repetition strategy to the extent the students
with a verbal style do. In the same vein, the visual learner’s emphasis on the repetition self-regulating learning
strategy is considered to be surprising. Verbal learning style student emphasized target setting, self-efficacy,
self-reflection, time management, and effort regulation strategies. Thus, it can be concluded that that time
management and regulation strategies could be expected, while the repetition strategy was once again a surprise.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 25

4.4. Sensing / Intuitive

Felder and Silverman (1988) in their learning style model defines sensing learning style having a preference for
the knowledge directed at their senses and the intuitive learners are better with knowledge arising internally,
from their own ideas. Student who had a sensing learning style in this study had addressed task value,
self-reflection, and effort regulation self-regulating learning strategies. Students with sensing learning style are
inclined to receive the knowledge directed towards their senses. In this context, emphasis on the effort regulation
and task value strategies on part of the student with the sensing learning style may be a function of the
perception with reference to her learning style. The student who had an intuitive learning style had emphasized
the task value, self-efficacy, and effort regulation self-regulating learning strategies. The intuitive learners
welcome the knowledge they can imagine internally in their minds, while the students with the intuitive learning
style presented with a surprise in the form of the emphasis on effort regulation self-regulating learning strategy.
Overall, students with the active, reflective, and verbal learning styles presented different self-regulation
strategies. These students evidently focus more on the self-regulation strategies, compared to the adherents of
other learning styles. The perceived self-regulation strategies among students who have active, intuitive, and
sequential learning styles does not lead to substantial differences. In terms of the programming learning process,
planning is pervasive throughout problem solving, guiding the direction that programmers take. Few participants
were expected to exhibit planning, given their inexperience. The lack of emphasis on planning with respect to
time management in particular, on part of students of some learning styles (visual/ verbal, sequential/ global) is
noteworthy. In the present study, students with a wide range of learning styles were found to exhibit skills such
as making associations with various fields, passing the course which can be listed among the motivational
factors. The similar results reached by Das (2015) revealed a significant relationship between self regulated
learning and cognitive styles of secondary school students. There is also a consistency between the findings of
this study and prior studies about the relationship between learning styles and self-regulation strategies. For
instance, the study by Kumar et al. (2005) indicates that programmers who received self-regulated-based
treatment outperformed those who did not. Safari and Hejazi (2017) examined the relationship between the Kolb
learning styles –converging, diverging, assimilating, and accommodating– with the participants’ self-regulation
skills. The results showed a positive relationship between each learning styles and self-regulation skills.

The study has also some limitations. The study was carried out with a limited size of sample selected from those
who received the Programming Languages course. With a sample size of 8 it was difficult to generalize the
power needed to precisely identify relations. Yet, the data gathered allow us to reach to certain conclusions
regarding the role of students’ work and their individual characteristics in a qualitative manner. The data from
interviews provided the discussions about the nature of the strategies.

5. Conclusion and Recommendations

The analysis sought to reveal the association between the learning style and the self-regulated learning in terms
of learning programming, with reference to the views expressed by students. The results suggest that learning
styles are somewhat related to self-regulation strategies. In particular, perceptions of the students with
active/reflective and sequential/global learning styles with reference to their SRL strategies considerably reflect
the characteristics of those learning styles.

On the other hand, students with visual/verbal learning styles did not strongly reflect those characteristics. Some
of the students in visual/verbal learning styles in turn, surprisingly expressed perceptions which are deemed to be
in contrast to those expected of their learning styles. Time management was identified as a leading strategy
among learning styles, while shortcomings regarding target setting and self-efficacy were prominent with almost
all learning styles. Thus, one can argue that learning styles and perceptions about SRL strategies are somewhat
related to each other. Nonetheless, some external factors may still affect this relationship. In this sense, in the
process of teaching programming, it is observed that directing students’ SRL strategies is not an easy task. In
other words, the reflections of students’ learning styles may not always match with their strategy use in the
learning process. In such cases, programming instructors may be compelled to find new ways for customizing
the learning process.
The present study investigated differentiation of learning styles with reference to qualitative interview data. This
allowed the association of the characteristics of learning styles, and the perceptions about the basic indicators of
self-regulation. Despite these and many other limitations affecting to the generalizability of our results, the

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 26

results may still be considered as a first step in understanding the relationship between learning styles and
self-regulation in programming. Since SRL strategies offer the potential of facilitating learning programming;
the results of this study suggest taking note of individual characteristics to inform the application of the strategies
is noteworthy. We hope that the results provide some insights into the self-regulated learning in a higher
education programming instruction.

References
Akpınar, Y., Altun, Y. (2014). The need for programming education at the schools of an information society.

Elementary Education Online, 13(1), 1-4.

Alharbi, A., Henskens, F., and Hannaford, M. (2014). Personalised learning object system based on
self-regulated learning theories. International Journal of Engineering Pedagogy, 4(3), 24-35.
http://dx.doi.org/10.3991/ijep.v4i3.3348

Alharbi, A., Paul, D., Henskens, F., and Hannaford, M. (2011). An investigation into the learning styles and
self-regulated learning strategies for computer science students. In Proceedings Ascilite. Association for
Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS), 2008.

Armstrong, A. (1989). The development of self-regulation skills through the modeling and structuring of
computer programming. Educational Technology Research and Development, 37(2), 69-76.

Arslan, B., Aksu, M. (2006). A descriptive study on the learning style profiles of engineering students of the
Middle East Technical University (METU). Education and Science, (31), 141.

Artino, A.R. (2008). Motivational beliefs and perceptions of instructional quality: Predicting satisfaction with
online training. Journal of Computer Assisted Learning, (24), 260-270.

Artino, A.R. (2009). Think, feel, act: motivational and emotional influences on military students’ online
academic success. Journal of Computing in Higher Education,(21), 146-166.

Azevedo, R.., Hadvin, A. (2005). Scaffolding self-regulated learning and metacognition-implications for the
design of computer-based scaffolds. Instructional Science, (33), 367-379.

Bennedsen, J. and Carpersen, M. E. (2008). Exposing the programming process. Bennedsen, J.,Carpersen, M. E.
ve Kolling, M. (Eds.). Reflection on the theory of programming: Methods and implementation, 6-16. New
York: Springer Berlin Heidelberg.

Bergin, S., Ronan R., Desmond, T. (2005). Examining the role of self-regulated learning on introductory
programming performance. In Proceedings of the First International Workshop on Computing Education
Research, (pp.81-86). Seattle, WA, USA.

Brennan, K., Resnick, M. (2012). Using artifact-based interviews to study the development of computational
thinking in interactive media design. Paper presented at annual American Educational Research
Association meeting, Vancouver, BC, Canada.

Büyüköztürk, Ş., Akgün, Ö. E., Özkahveci, Ö., and Demirel, F. (2004)	.Validity and reliability study of Turkish
version of the scale of motivation and learning strategies. Theory and Practice in Educational
Sciences,4(2), 207-239.

Chen, C. L., & Lin, J. M. C. (2011). Learning styles and student performance in java programming courses.
In Proceedings of the International Conference on Frontiers in Education: Computer Science and
Computer Engineering (FECS) (p. 1). The Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp).

Das, A. (2015). Self Regulated Learning and Cognitive Styles of School Students - A Study, International

Journal of Science and Research, 5(12), 1691-1694

Dille, B., Mezack, M. (1991). Identifying Predictors of High Risk among Community College Telecourse

Students, The American Journal of Distance Education, 5(1), 11-19.

Falkner, K., Szabo, C., Vivian, R. and Falkner, N. (2015). Evolution of software development Strategies. In
Proceedings of the 37th International Conference on Software Engineering. Florence, Italy.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 27

Falkner, K., Vivian, R. and Falkner, N. (2014). Identifying Computer Science Self-Regulated Learning
Strategies. In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science
Education, 2, pp. 291-296.

Felder, R.M. & Silverman, L.K. (1988). Learning and teaching styles in engineering education. Engineering
Education, 78(7), 674-681.

Felder, R.M. & Soloman, B. A. (1994). Index of Learning Styles. North Carolina State University, Retrieved
January 06, 2017, from http://www.ncsu.edu/felder-public/ILSdir.html.

Felder, R.M., and Spurlin (2005). Applications, Reliability and Validity of the Index of Learning Styles.
International Journal of Engineering Education, 21(1), 103-112.

Gülbahar, Y. (2005). Learning Styles and Technology, Education and Science, 30(138), 10-17.

Hui, H., Umar, I. (2011). Pair programming and lss in computing education: its impact on students’
performances. US-China Education Review, 8(2), 613-626.

Hwang, G., Liang, Z. and Wang, H. (2016). An Online Peer Assessment-Based Programming Approach to
Improving Students’ Programming Knowledge and Skills. In Educational Innovation through Technology
(EITT), 2016 International Conference on (pp. 81-85). Tainan, Tayvan: IEEE.

Kfee, B.J. (1988). The logic of message design: Individual differences in reasoning about communication.
Communication Monographs, 55, 80-103.

Kozlowski, S., Bell, B. (2006). Disentangling achievement orientation and goal setting: effects on self-regulatory
processes. Journal of Applied Psychology, 900-916.

Kumar, V., Winne, P. H., Hadwin, A. F., Nesbit, J. C., Jamieson-Noel, D., Calvert, T., et al. (2005). Effects of
self-regulated learning in programming. In Fifth IEEE International conference on advanced learning
technologies (ICALT 2005) (pp. 383-387). IEEE.

Kuo, F., Wu, W. and Lin, C. (2013). An investıgatıon of self-regulatory mechanisms in learning to program
visual basic. Journal Educational Computing Research, 49(2), 225-247.

Lau, W., Yuen, A. (2011). Modeling programming performance: beyond the influence of learner characteristics.
Computers & Education, 571(1), 1202-1213.

Lavasani, M. G., Mirhosseini, F.S., Hejazi, E., Davoodi, M. (2011). The Effect of Self-regulation Learning
Strategies Training on the Academic Motivation and Self-efficacy. Procedia Social and Behavioral
Sciences, 29, 627 – 632.

Lee, T.H., Shen, P.D., & Tsai, C.W. (2010). Enhance students’ computing skills via webmediated self-regulated
learning with feedback in blended environment. International Journal of Technology and Human
Interaction, 6(1), 15-32.

Li, P., Ko, A. and Zhu, J. (2015). What Makes a Great software Engineer? In Proceedings of the 37th
International Conference on Software Engineering, Florence, Italy.

Liaw, S.S. & Huang, H.M. (2013). Perceived satisfaction, perceived usefulness and interactive learning
environments as predictors to self-regulation in e-learning environments. Computers & Education, 60(1),
14-24.

Litzinger, T.A., Lee, S.H.; Wise, J.C., and Felder, R.M. (2007). A Psychometric Study of the Index of Learning
Styles. Journal of Engineering Education, 96(4), 309-319.

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., & Burnett, M. M. (2016). Programming, problem
solving, and self-awareness: effects of explicit guidance. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (pp. 1449-1461). ACM.

Lye, S. Y., Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12?. Computers in Human Behavior, 41, 51–
61. https://doi.org/10.1016/j.chb.2014.09.012

Man-Chih, A. (2006). The effect of the use of self-regulated learning strategies on college students' performance
and satisfaction in physical education (Unpublished Doctoral Dissertation). Australian Catholic University,
Australia. Retrieved March 06, 2018, from https://doi.org/10.4226/66/5a94b7585e4cb

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 28

Nam, D., Kim, Y. and Lee, T. (2010). The Effects of Scaffolding-Based Courseware for the Scratch
Programming Learning on Student Problem Solving Skill. In Proceedings of the 18th International
Conference on Computers in Education, (pp. 723-727). Putrajaya, Malaysia.

Norwawi, N. M., Abdulsalam, S. F., Hibadullah, C. F. and Shuaibu, B. M. (2009). Classification Of Students'
Performance in Computer Programming Course According to Learning Style. Data Mining and
Optimization. Kajand, Malaysia.

Paechter, M., Maier, B., and Macher, D. (2010). Students' expectations of and experiences in e learning: Their
relation to learning achievements and course satisfaction. Computers & Education, 54(1), 222-229.

Paris,W. (2001). The role of self-regulated learning in contextual teaching: principles and practices for teacher
preparation. Retrieved 11 April 2018, from https://files.eric.ed.gov/fulltext/ED479905.pdf

Pintrich , P. R., Smith, D.A., Garcia, T.,and McKeachie, W. J. (1991). A manual for the use of the motivated
strategies for learning questionnaire (MSLQ). University of Michigan, Ann Arbor.

Pintrich, P. R.(2004). A conceptual framework for assessing motivation and self-regulated learning in college
students. Educational Psychology Review, 16(4), 385-407

Pintrich, P. R., De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom
academic performance. Journal of Educational Pschology, 82, 33-40.

Pintrich, P.R. (2000). A motivational science perspective on the role of student motivation in learning and
teaching contexts. Journal of Educational Psychology, 95, 667-686.

Puzziferro, M. (2008). Online technologies self-efficacy and self-regulated learning as predictors of final grade
and satisfaction in college-level online courses. American Journal of Distance Education, 22(2), 72-89.

Ramalingam, V., LaBelle, D. and Wiedenbeck, S. (2004). Self-efficacy and mental models in learning to
program, In Proceedings of the 9th annual SIGCSE conference on Innovation and technology in computer
science education, June 28-30, 2004, Leeds, United Kingdom.

Saeli, M., Perrenet, J., Jochems, W. and Zwaneveld, B. (2011). Teaching programming in secondary school: a
pedagogical content knowledge perspective. Informatics in Education, 10(1).

Safari, E., Hejazi, M. (2017). Learning styles and self-regulation: an associational study on high school students
in iran. Mediterranean Journal of Social Sciences, 8(1), 463-469.

Schunk, D.H. & Zimmerman, B. J. (Eds.). (1998). Self-regulated learning: From teaching to self reflective
practice. New York: Guilford Press.

Shannon, S.V. (2008). Using metacognitive strategies and learning styles to create self-directed learners.
Institute for Learning Styles Journal, 1,14-28.

Wang, C., Shannon, D., and Ross, M. (2013). Students' Characteristics, Self-Regulated Learning, Technology,
Self-Efficacy, and Course Outcomes in Online Learning. Distance Education, 34(3), 302-323.

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to program, In Proceedings of
The First International Workshop on Computing Education Research,	13-24, Seattle, WA, USA.

Wiedenbeck, S., LaBelle, D. and Kain, V. (2004). Factors affecting course outcomes in introductory
programming. In Proceedings of the Sixteenth Annual Workshop of the Psychology of Programming
Interest Group (PPIG' 04) (pp. 97-109).

Zhang, L., Jia, J., Wang, B., Amanai, K., Wharton, K. A., & Jiang, J. (2006). Regulation of wingless signaling
by the CKI family in Drosophila limb development. Developmental Biology, 299(1), 221-237.

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical, background, methodological
developments, and future prospects. American Educational Research Journal, 45, 166−183.

Zimmerman, B. J., & Martinez-Pons, M. (1990). Student differences in self-regulated learning: Relating grade,
sex, and giftedness to selfefficacy and strategy use. Journal of Educational Psychology, 82, 51-59.

Zimmerman, B.J. (2002). Becoming a Self-Regulated Learner: An Overview, Theory Into Practice, 41(2), 64-70,
Zywno, M. S. (2003). A contribution to validation of score meaning for Felder-Soloman’s index of learning

styles. In Proceedings of the 2003 American Society for Engineering Education Annual Conference &
Exposition (Vol. 119, pp. 1-5). Washington, DC: American Society for Engineering Education.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 29

Using Grey-based Mathematical Equations of Decision-making as

Teaching Scaffolds: from an Unplugged Computational Thinking

Activity to Computer Programming
Meng-Leong How1

Chee-Kit Looi1

1National Institute of Education, Nanyang Technological University, Singapore

DOI: 10.21585/ijcses.v2i2.24

Abstract
Computational Thinking (CT) is pervasive in our daily lives and is useful for problem-solving. Decision-making
is a crucial part of problem-solving. In the extant literature, problem-solving strategies in educational settings are
often conveniently attributed to intuition; however, it is well documented that computer programmers might even
have difficulty describing about their intuitive insights during problem-solving using natural language (such as
English), and subsequently convert what has been described using words into software code. Hence, a more
analytical approach using mathematical equations and descriptions of CT is offered in this paper as a potential
form of rudimentary scaffolding, which might be useful to facilitators and learners of CT-related activities. In the
present paper, the decision-making processes during an unplugged CT activity are delineated via Grey-based
mathematical equations, which is useful for informing educators who may wish to explain to their learners about
the various aspects of CT which are involved in the unplugged activity and simultaneously use these
mathematical equations as scaffolds between the unplugged activity and computer code programming. This
theoretical manuscript may serve as a base for learners, should the facilitator ask them to embark on a software
programming activity that is closely associated to the unplugged CT activity.
Keywords
grey-based mathematical equations, decision making, computational thinking, scaffolding for teaching, computer
software programming, unplugged computational thinking activity

1. Introduction

In computer programming education, there might be an overemphasis on students' acquisition of the
syntax of a programming language; often at the expense of development of problem-solving skills (McGill &
Volet, 1997). Somers (2017) notices that programmers do not work on a problem directly. He quoted Nancy
Leveson, a professor at the Massachusetts Institute of Technology who has been studying software safety for 35
years, who explains, "The problem is that software engineers don't understand the problem they're trying to solve,
and don't care to. The reason is that they're too wrapped up in getting their code to work. The serious problems
that have happened with software have to do with requirements, not coding errors." Hence, development of
problem-solving skills should be a high priority for computer programming education.

Griffin (2016) points out that it is important for computer programmers to develop a mental model of a
notional machine (du Boulay, O’Shea, & Monk, 1981), which is a rudimentary model that describes the
instructions of a computer program for problem-solving. Strong interest in how the computer programmer could

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 30

develop this mental model (by researchers such as Grover, Pea, & Cooper, 2015; Hu, 2011; Selby, 2013; Wing,
2008), have more precisely explicated this mental model of a notional machine into what is now known as
Computational Thinking (CT). A generally accepted definition of CT is still developing (Selby, 2013); even the
very definition of individual constituents of CT such as the concept of abstraction is still evolving (Cetin &
Dubinsky, 2017). Nevertheless, in the present paper, for the purpose of “operationalising” CT concepts for
utilisation of mathematical equations in decision-making and problem-solving using a computer programming
language, we follow the conceptual framework offered by Gouws et al. (2013) who have more concisely
elucidated CT concepts specifically for the field of education. The constituents of this mental model of CT
offered by Gouws et al. (2013) include decomposition, algorithmic thinking, abstraction of data and functionality,
evaluation, and generalisation. Decomposition refers to the process of breaking down a problem into multiple
steps, in order to solve it. Algorithmic thinking refers to the repetitive execution of patterns of instructions,
which might involve loops for iteration or recursion. Abstraction of data and functionality refers to the notion of
representations in data storage and the manipulation of those data in functions. Generalisation refers to the ability
to create adaptable solutions that are reusable for a wider range of problems. Evaluation is the ability to select
the best solution for a given problem, as well as to identify and correct errors.

CT is pervasive (Bundy, 2007); in our daily tasks, CT is particularly useful for problem-solving (Barr,
Harrison, & Conery, 2011). Indeed, CT is indispensable to problem-solving in the real world, and is also
considered to be essential in education (Wing, 2008). Efforts have already been made in many studies to
delineate which aspects of CT might be explicitly learnt by a person who has participated in screen-based
activities (by researchers such as Grover, 2015; Israel, Pearson, Tapia, Wherfel, & Reese, 2015; Monteiro,
Salgado, Mota, Sampaio, & de Souza, 2016; Selby & Cynthia, 2015).

Visualisation of code can also be in the form of physical or kinaesthetic activities (also referred to as
unplugged activities); not just on screen-based devices. Zagami (2012) posits that the computer programmer

could understand programming concepts better from visualisation of how code works. Research into non-screen
based unplugged activities (by researchers such as Bell et al., 2009; Cortina, 2015; Paul Curzon et al., 2014;
Feaster, Segars, Wahba, & Hallstrom, 2011; Rodriguez, 2015; Taub, Armoni, & Ben-Ari, 2012; Taub, Ben-Ari,
& Armoni, 2009; Thies & Vahrenhold, 2012; Thies & Vahrenhold, 2013) have demonstrated that they might
potentially help learners to understand computing concepts kinaesthetically as they solve problems in the real
world.

Research Problem

In the extant literature, decision-making strategies in problem-solving used by learners in educational
settings might often just be conveniently assumed by educators to be naturalistic (Zsambok, 2014), or simply
intuitive (Metcalfe & Wiebe, 1987; Pretz, 2008). However, it is well documented that computer programmers
might have difficulties in describing about their intuitive insights during problem-solving using natural language
(such as English), and subsequently convert what has been described using words into software code. In a
previous study by Kordaki, Miatidis, and Kapsampelis (2008), the students constructed an algorithm intuitively
in an activity using coins, but most of them had problems describing the procedure which they had used, when
they tried to express it in natural language (English) and pseudocode. Boticki, Barisic, Martin, and Drljevic
(2013) also observed that students might have difficulties translating their thoughts into a form that could be
used in computers.

Decision making is that thinking which results in the choice among alternative courses of action;

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 31

problem solving is that thinking which results in the solution of problems (Taylor, 2013, p. 48). Further, Taylor
(2013) also points out that the processes in decision-making are also important to problem-solving (p. 48). In the
extant literature, besides the seminal work into computational models of decision-making done by Busemeyer
and Johnson (2004), far too little attention has been paid to decision-making in problem-solving skills for
computer programming education, and in particular for CT.
 Wing (2008) proffers that CT is a form of analytical thinking which shares with mathematical thinking,
engineering thinking, and scientific thinking in similar ways in which we might approach the understanding and
modelling of real world phenomena, in order to solve problems. She points out that many sciences and
engineering disciplines also rely on simulations of mathematical models of physical processes found in nature.
Mathematical modelling has also been utilised in the field of education by educators, students, and researchers
(Stillman, Blum, & Biembengut, 2015). In education, mathematical modelling has been employed as a strategy
for building up systems of knowledge (D’Ambrosio, 2015), for students who do not solve problems
independently to share and refine mathematical models through dual modelling teaching (Kawakami, Saeki, &
Matsuzaki, 2015), for exploring interconnections between real-world and application tasks (Ng & Stillman,
2015), and as visualisation tactics for solving real-world tasks (Brown, 2015).
	

The authors of the present paper do concede that using mathematical equations to model a phenomena
and subsequently converting those mathematical equations into computer programming code is nothing new; in
fact, it is a part of Computational Science (Humphreys, 2004). In computational science, computational models
are usually presented as mathematical models because they can be analysed and even run as simulations using
computers to better understand the characteristics of the phenomenon being studied. For example, computational
fluid dynamics (Chung, 2010) refers to the computational modelling of fluid dynamics. Computational finance
(Ugur, 2008) refers to the computational modelling of financial-related systems. Computational biology
(Waterman, 1995) refers to the computational modelling of biological-related systems. In the same token,
computational thinking (Wing, 2006) could be construed as the computational modelling of thinking. Laudable
efforts have been made by computational thinking researchers (such as Lu & Fletcher, 2009; Weintrop et al.,
2016) to illustrate key concepts in computational thinking which involved the use of mathematical equations;
however, these studies seem to be solely focused on which aspects of computational thinking were involved
when a person encounters a mathematical formula or algorithm. Currently, there is a dearth of computational
models about the “thinking” part of computational thinking in the extant literature. The present paper purports to
explore this “thinking” part of computational thinking via the decision-making portions of problem-solving; first
from the perspective of a human learner playing with the programmable toy mouse in an unplugged
computational thinking activity, and subsequently from the perspective of a computer programmer who is
programming the software version of a self-navigating mouse that can autonomously reach its objectives.

Since CT purports to enable humans to analyse problems, and to communicate the corresponding
solutions using computational terms that are ultimately meant for computers to comprehend and execute, it
follows that mathematical modelling might be well suited for understanding the decision-making processes
involved during an unplugged CT activity. The mathematical model can also be utilised as a valuable resource
should the facilitator choose to ask the learners to implement a software programme to describe the
decision-making strategies that might be involved.

In the present paper, the decision-making processes during an unplugged activity, which utilises a
programmable toy mouse as a simple example, are depicted via mathematical equations, to elucidate which
aspects of CT might be involved in decision-making during problem solving. The analytical approach of using

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 32

mathematical equations and descriptions of CT is offered in this paper as a potential form of rudimentary
scaffolding between CT concepts and software programming, which might be useful to facilitators and learners
of CT-related activities.

The rest of this paper is organised as follows: in the next section, the basic building blocks for the
mathematical modelling of decision-making during the unplugged CT activity will be presented. Using the
conjectures from these mathematical equations, the aspects of CT involved, together with some examples of
Python programming code that correspond to the mathematical equations, will be presented in the discussion
section. In the present paper’s hypothetical scenario, the programmer needs to implement parts of the Python
code to create a software-based self-navigating mouse that can avoid obstacles and autonomously move towards
its goals. Finally, the direction of future research will be presented in the conclusion section.

2. Mathematical modelling of decision-making in unplugged ct activity

In the context of this research, a simple case of an unplugged CT activity which involves a
programmable toy mouse (see Figure 1) will be used. In this unplugged CT activity, the learner operating the
programmable mouse must evaluate the possible consequences when trying to achieve the pre-determined
objectives. Since computational modelling usually involves the use of mathematical models, it follows that using
mathematical models to depict decision-making in problem-solving might allow us to clearly see the aspects of
computational thinking involved. A grey-based approach (Deng, 1989; Liu & Lin, 2010; Liu, Yang, & Forrest,
2016) of mathematical modelling is utilised in this paper, because it excels in modelling phenomena in situations
where there might be uncertainty, scarcity of quantitative data, or incomplete information; situations which
learners often find themselves in during problem-solving exercises. Further, although the entire maze could be
easily observed by a human, a software-based self-navigating mouse that the programmer is trying to create –
having sensors only on its front, left, right, and rear – can only detect whether there is any object in its immediate
vicinity. It does not have a “bird’s eye view” of the entire maze. Also, the programmer might need to implement
the features to enable the software-based mouse to "decide" whether an object is an obstacle or a goal it is trying
to reach. It might also need to learn from its previous attempts and “predict” the next step that it needs to take.
Accordingly, we use the conceptual notion of “black” to indicate completely unknown information, “white” to
indicate completely known information, and “grey” to indicate partially known and partially unknown
information (Liu & Lin, 2010, p. 15). Grey-based mathematical equations are used because they could
potentially be used to address issues of uncertainty that might be countered when a programmer is trying to
implement the self-navigating features of the software-based mouse in computer code.

Figure 1: Unplugged activity which uses a programmable toy mouse

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 33

The basic building blocks for modelling decision-making during problem-solving, which is adapted

from the Grey Models of Decision Making, first developed by Liu & Lin (2010, p. 197) into the context of the
programmable toy mouse in this unplugged CT activity, is presented as follows:

Let the four key elements of decision-making be events, countermeasures, effects, and objectives. Let
the totality of all events which might be encountered by the programmable toy mouse in the unplugged activity
be denoted as

E = {e1, e2, … en} (1)
where ei represents the ith event within the set of events, where i = 1, 2, 3, …, n, such that the event e1 precedes
e2 and e2 precedes e3 and so forth.

A countermeasure (Oxford Living Dictionaries, 2017) is an actionable process or choice that could be
taken (or conversely, not taken) to mitigate the effects of an event. The term “countermeasure” is used instead of
“action” because of the implication that it could be taken or not taken after considerations during the
decision-making process. The totality of all countermeasures is defined as the set of countermeasures, denoted as

C = {c1, c2, … , cm} (2)
and cj represents the jth countermeasure within the set of countermeasures, where j = 1, 2, … m. Actions taken
by the programmable mouse (see Figure 2) can be considered as countermeasures, with the action “forward”
denoted as c1, “rotate left” denoted as c2, “rotate right” denoted as c3, and “reverse” denoted as c4. Thus, the set
of countermeasures for the programmable toy mouse is denoted as

C = { c1, c2, c3, c4 } (3)

Figure 2: Buttons on the programmable toy mouse

The set of decision schemes S = E × C can be represented by the Cartesian product

E x C = { (ei, cj) | ei ∈ E, cj ∈ C } (4)
of the set of events E, and the set of countermeasures C, where each pair of decision scheme sij = (ei, cj), for any
ei ∈ E, cj ∈ C. Hence, a set of decision schemes for the programmable toy mouse, which represents the totality
of all the various combinations of moves it can make, is denoted as

S = E × C = Sij = (ei, cj) = { S11 , S12 , … , S14, S21, … , S24 , S31, … , S34 , …} (5)

A set of decision schemes not only can be used to represent the totality of the various ways the

programmable toy mouse can move that an individual learner has considered, if there is only one learner.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 34

Especially noteworthy is, it can also be used to represent the totality of the various ways of solving the problem
that a group of learners has discussed about together, if there is more than one learner involved, such in this
instance, where many learners are involved in the decision-making process to discuss how best to move the
programmable toy mouse.

In this unplugged activity, the facilitator can first explain to the learners that at each step, the
programmer must decide whether to make the mouse move forward, or to rotate left or right, or to move in
reverse. In our mathematical model, however, each “step” that the mouse takes can be technically considered to
be an event. For example (see Figure 3), each step shall be technically referred to as an event in the
computational model, and in each step, there is a corresponding countermeasure, which can be Forward, or
Rotate Left, or Rotate Right.

For example, at event e1, the programmable toy mouse might not be blocked by any obstacle in front,
behind, or on its sides, so the programmer can choose to deploy countermeasure c1 to move the mouse one
square forward. At event e2, the programmable mouse might encounter an event where the goal (the cheese) is
located to its left, so the programmer needs to deploy the countermeasure c2 to rotate left, and so forth.

Figure 3: Example of a path utilised by a learner for the programmable toy mouse

Effect values of decision schemes

To encourage the learners to participate in this unplugged activity, the facilitator might like to consider
explaining to them that there will be a competition where each team is required to discuss about the best steps for
the mouse to take, before using the mouse. The rules of the competition can be presented to them in a slide (see
sample slide in Figure 4).

Figure 4: Rules of the competition for the teams of learners participating in the unplugged CT activity
Effect value of decision scheme
Let a set of decision schemes be denoted as

S = { Sij = (ei, cj) | ei ∈ E, cj ∈ C } (6)

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 35

Further, let 𝑢!"
(!) represent the effect value of the set of decision scheme Sij with respect to the objective k, where

R represents the set of all real numbers. If we suppose that 𝑢!"
(!): 𝑆⟼ 𝑅, that is, the effect value 𝑢!"

(!) can be

mapped from the set of decision schemes to a set of real numbers with respect to the objective k, it follows that a

particular decision scheme 𝑠!" can also be mapped to an effect value, which can be denoted as 𝑠!" ⟼ 𝑢!"
(!). For

example, in the context of the points award system of the competition in this unplugged CT activity (see Figure
4), the learners in each team are encouraged to discuss among themselves to propose a solution (a particular
decision scheme which is selected from a set of decision schemes) for their team and try it on the programmable
toy mouse. Hence, the effect values of the teams’ decision schemes can be directly manifested in the real values
of the points that they score (or lose).

Equivalent countermeasures
 If two different actions (also referred to as countermeasures) of the programmable toy mouse can contribute
to achieving the same objective, we can denote it as follows: if the countermeasures 𝑐! and 𝑐! are equivalent
with respect to objective k, it can be denoted as 𝑐! ≅ 𝑐! . Hence, the set with equivalence class of
countermeasure 𝑐! to the event 𝑒! with respect to objective k can be denoted as
 𝐶!

(!) = { c | c ∈ C, c ≅ 𝑐! } (7)

Suppose the two effect values 𝑢!"
(!) and 𝑢!!

(!)are equivalent, then this effect equivalence can be denoted

as 𝑢!"
(!) = 𝑢!!

(!). For example (see Figure 5), the effect value in Decision Scheme A can be considered to be

equivalent to the effect value in Decision Scheme B, because the mouse takes the same number of
countermeasures to reach the cheese.

Figure 5: Example of equivalent effect values

Superiority of a countermeasure
 If a countermeasure is considered to be better than another countermeasure for the programmable toy

mouse, it can be denoted as follows: if the effect value 𝑢!"
(!) is greater than the effect value 𝑢!!

(!), it can be

denoted as 𝑢!"
(!) > 𝑢!!

(!). If the countermeasure 𝑐! is superior to 𝑐! in response to event 𝑒! with respect to

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 36

objective k, it can be denoted as 𝑐! ≻ 𝑐!. Hence, it follows that the superior set of countermeasures 𝑐! to the

event 𝑒! with respect to objective k can be denoted as
 𝐶!!

(!) = { c | c ∈ C, c ≻ 𝑐! } (8)

Superiority of a decision scheme
 After discussion amongst the learners in their respective teams, if a set of emergent decision scheme is

considered to be superior by the team members, it can be expressed as follows: if the effect value 𝑢!"
(!) must be

greater than the effect value 𝑢!!
(!) to achieve the objective, it can be denoted as 𝑢!"

(!) > 𝑢!!
(!). If the decision

scheme 𝑠!" is superior to 𝑠!! with respect to objective k, it can be denoted as 𝑠!" ≻ 𝑠!! and hence the set of
superior decision scheme can be denoted as

 𝑆!!
(!) = { s | s ∈ S, s ≻ 𝑠!! } (9)

For example (see Figure 6), if decision scheme A is contributed by Learner A, decision scheme B is
contributed by Learner B, and decision scheme C is contributed by Learner C, and suppose in the group
discussion, the three learners come to a decision that decision scheme A is superior because the programmable
toy mouse would be able to reach the cheese if this is chosen, we can say that decision scheme A is superior
compared to decision schemes B and C.

Figure 6: Example of a superior decision scheme

Threshold values of decision effects
 In the competition within this unplugged activity, the teams of learners are motivated to discuss and present
their perceived solution quickly, so that they can score higher points; however, if their solution of the algorithm

is incorrect, they might be penalised too, so this can be expressed as follows: let 𝑑!
(!) be the upper threshold

value (the points that the team can score if its solution is correct), and 𝑑!
(!) be the lower threshold value (the

points that the team can score if its solution is incorrect) of the decision scheme 𝑠!" with respect to the single

objective k, and r be the value between the range of 𝑑!
(!) and 𝑑!

(!). It follows then that the one-dimensional
grey target for objective k can be denoted as

 𝑆! = 𝑟 𝑑!
(!) ≤ 𝑟 ≤ 𝑑!

! } (10)

and a satisfactory effect value with respective to objective k can be denoted as

 𝑢!"
(!)∈ [𝑑!

(!),𝑑!
(!)] (11)

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 37

Decision-making with multiple objectives

Suppose 𝑢!"
(!) represents the effect value of decision scheme 𝑠!" with respect to a single objective k. If

𝑠!" is a feasible decision scheme which can contribute to achieving the objective k, it can be denoted as 𝑠!"∈𝑆!.
This applies to situations which involve a single objective.
 For grey targets of decision-making with multiple objectives, if there are two objectives for instance (see

Figure 7), we can assume that 𝑑!
(!) and 𝑑!

(!) to be the lower and upper threshold values of the decision effects
of objective 1, where 𝑟(!) represents the value between the range of 𝑑!

(!) and 𝑑!
(!). We can also assume

𝑑!
(!)and 𝑑!

(!) to be the lower and upper threshold values of the decision effects of objective 2 , where 𝑟(!)
represents the value between the range of 𝑑!

(!) and 𝑑!
(!) . Hence, the grey target of two-dimensional

decision-making can be denoted as

 𝑆! = 𝑟(!), 𝑟(!) 𝑑!
(!) ≤ 𝑟 ! ≤ 𝑑!

! ,𝑑!
(!) ≤ 𝑟 ! ≤ 𝑑!

! } (12)

Figure 7: Multiple objectives of the programmable toy mouse

If this effect vector of 𝑠!" satisfies the effect value 𝑢!" such that 𝑢!" = {𝑢!"
! , 𝑢!"

! } ∈ 𝑆!, then 𝑠!"

can be considered to be a superior decision scheme with respect to objectives 1 and 2. It also follows that 𝑐! can

be considered to be a superior countermeasure for event 𝑒! with respect to objectives 1 and 2.

 Suppose 𝑑!
(!) , 𝑑!

(!) , 𝑑!
(!) , 𝑑!

(!) , … where 𝑑!
(!) and 𝑑!

(!) represent the lower and upper threshold
values of decision effects with respect to objectives 1, 2, … , s. A grey-target with a s-dimensional
decision-making scheme can be denoted in Euclidean space as

 𝑆! = 𝑟(!), 𝑟(!),… , 𝑟(!) 𝑑!
(!) ≤ 𝑟 ! ≤ 𝑑!

! ,𝑑!
! ≤ 𝑟 ! ≤ 𝑑!

! ,… ,𝑑!
! ≤ 𝑟 ! ≤ 𝑑!

! } (13)

Hence, if 𝑠!" is a superior decision scheme, where 𝑢!"
! represents the effect value of the decision

scheme 𝑠!" with respect to the objective k, and k = 1, 2, …, s, then effect vector can be denoted as

 𝑢!" = {𝑢!"
! , 𝑢!"

! ,… , 𝑢!"
! } ∈ 𝑆! (14)

These grey-targets of decision-making represent the locus of superior effects. In reality, however, it

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 38

might be almost impossible to achieve absolute optimization of an outcome. Nevertheless, in analysis we
endeavour to strive for the quasi-optimal outcome, where the decision scheme and its corresponding
countermeasures are quasi-optimal; which is to say, they are the best choices among the available decision
schemes and their corresponding countermeasures. As a cautionary note, however, the quasi-optimal solution
presented by a team of learners might not always be the correct solution; in fact, it could even be incorrect.

Time Series: Memories of Sets of Decision Schemes

So far, the discussion has focused only on static decision schemes with a fixed moment in time.
Grey-based decision-making can also focus on changes of the decision effect over time (Liu et al., 2016). Let us
suppose that in a hypothetical scenario, the facilitator might wish to consider asking the learners to develop a
software-based self-navigating mouse that can perform autonomous problem-solving in a series of different
maze challenges, not just in one maze challenge. Instead of static decision schemes, the concept of time can now
be included; as time advances forward, the changing decision effects can also be considered.

Memory plays an important role in problem solving (Reber & Kotovsky, 1997). In the software-based
self-navigating mouse’s multiple attempts at problem-solving, which involves the notion of time, it has to
“remember” the consequential effects of its previous attempts, before another attempt is made to solve a similar
problem in the future. As such, the facilitator might also consider asking the learners to implement a rudimentary
type of memory into the software-based self-navigating mouse, so that it can “remember” its previous moves in
the form of a time series. Suppose a set of events is represented by E = { e1, e2, e3, …, en }, a set of
countermeasures is represented as C = { c1, c2, …, cm }, and the set of decision schemes is represented by S = { sij

= (ei, cj) | ei ∈ E, cj ∈ C }, then it follows that the time series of decision effect of the decision scheme 𝑠!" with
respect to the objective k can be denoted as

 𝑢!!
! = (𝑢!"

! 1 , 𝑢!"
! (2), … , 𝑢!"

! (ℎ)) (15)

This section has described some mathematical equations that might be used to depict the
decision-making processes that might be involved in the programmable toy mouse in the unplugged CT activity.
The next section will present some of the CT concepts and their corresponding Python programming code that
might be useful as scaffolds for the teacher in the facilitation of a discussion with the students about CT concepts
in decision-making and problem-solving, and how to implement them using computer programming code.

3. Discussion
 So far, these grey-based mathematical equations have tried to depict the decision-making processes that
might be involved in the unplugged CT activity to educe (meaning: to draw out) the problem-solving abilities of
the learners. Sometimes, after an unplugged CT activity has been conducted, the facilitator might wish to
continue with a code writing activity for the learners, if they already have experience in software programming.
For example, the facilitator might consider asking the learners to write code to implement the mouse in software,
in such a way so that it has autonomous decision-making abilities. Besides text syntax-based programming
languages such as Python, C++, and Java, software programmes can also be developed using mathematical
equations. Currently, a software which utilises symbolic computing and can accept mathematical symbols as part
of its programming syntax to create simulations is Mathematica (Wolfram Research Incorporated, 2017). Should
the facilitator choose to explicitly explain the CT concepts involved in the unplugged CT activity to the learners,
so that by analogous association, they can programme decision-making capabilities in the software-based

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 39

autonomous self-navigating mouse, the following information might be useful for the programmers, regardless
of the choice of programming language to be used. In the current section, some suggested snippets of computer
programming will be offered as illustrations to show how the afore-mentioned mathematical equations of
decision-making can be used as scaffolds by the teacher for possible discussions of computer programming with
the students. The Python programming language is used in the present paper, because it has become quite
popular for learning programming in schools. It had also gained traction as a programming language for
development work in machine learning, deep learning, and artificial intelligence. In the present paper, the Python
code snippets are not intended to be complete solutions; they merely serve as scaffolds for the teacher to discuss
about programming concepts and CT concepts with the students. This section purports to make explicit the CT
concepts for implementing decision-making capabilities in the software-based self-navigating mouse.
Computational Thinking in Decision-making: Abstraction

The CT concept of abstraction of data can be applied to the events (see Table 1) which can be
represented as lists or arrays in the software-based self-navigating autonomous mouse. For the purpose of
keeping this example simple, the number of events is assumed to be 5. It is also assumed that in this game, the
self-navigating mouse is not allowed to reverse. The values inside each event are assumed to be some data
“sensed” by the software version of the self-navigating mouse, perhaps via machine-vision or via proximity
sensors. Let us assume that this software-based self-navigating mouse has three sensors, one on its front, one on
its left side, and one on its right side. In each event that the mouse encounters, the event ei can be represented as
an array with 3 values, each from its front, left, and right sensor respectively. For example, if there is a cheese in
front of the mouse, its value would be: 2, if there is an obstacle on its left, its value would be: -1, if there is no
object on its right, its value would be: 0. Hence, it can be represented as an array in Python code e1 = [2, -1, 0].
Therefore, if it encounters 5 events, it can be represented in Python code as follows:

 Table 1: Mathematical equation of an array of events and its corresponding Python code
From Equation 1: A set of events

 E = {e1, e2, … e5}

Example of corresponding Python code

The CT concept of abstraction of data can be applied to the events (see Table 2) by representing them as

an immutable tuple or alternatively as an array in the software-based self-navigating autonomous mouse. For the
purpose of keeping this example simple, the number of events is assumed to be 4, where actions taken by the
self-navigating autonomous mouse can be considered to be countermeasures, with the action “forward” denoted
as c1, “rotate left” denoted as c2, “rotate right” denoted as c3 and “reverse” denoted as c4. For ease of
computation by the software-based self-navigating autonomous mouse, the value of c1 is 1, the value of c2 is 2,
the value of c3 is 3, and the value of c4 is 4.

Table 2: Mathematical equation of an array of countermeasures and its corresponding Python code

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 40

From Equation 3:
A set of 4 countermeasures

C = { c1, c2, c3, c4 }

Example of corresponding Python code

Besides representing data as variables in lists or arrays, data can also be presented in the form of a

Cartesian structure in Euclidean space during the decision-making process (see Equation 5) in the
software-based self-navigating autonomous mouse. This Cartesian structure can be easily created using Python;
it involves the usage of vertically stackable arrays to create a multi-dimensional matrix (see Table 3).
Multi-dimensional matrices are also referred to as tensors, which could be used to store data of different
data-types “sensed” by the software-based self-navigating autonomous mouse from its sensors. In real-world
practical applications, tensors – which are useful for storing massive amounts of digital data from pixels of
images, audio data, spatial data, and so forth – are the cornerstone of data structures in artificial intelligence
programming-related software such as TensorFlow, Theano, and Keras.

Table 3: Mathematical equation of a multi-dimensional matrix and its corresponding Python code
From Equation 5:
An E by C dimension Cartesian
structure formed from the equation
which represents Events and
Countermeasures.

E × C = Sij
= { S11 , S12 , … , S14, S21, … , S24 ,
S31, … , S34 , …}

Example of corresponding Python code

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 41

Computational Thinking in Decision-making: Evaluation
The CT concept of evaluation could potentially be applied in this manner: let us suppose that the

software-based self-navigating mouse has autonomous decision-making capabilities to select the best
quasi-optimum solution using the decision-making process to determine the superiority of a countermeasure (see
Equation 8). The following is a simple contrived example of using Python code to calculate the magnitude of an
array of possible countermeasures, so that a “superior” countermeasure can be determined:

Table 4: Python code to calculate the magnitude of an array to determine which direction the
self-navigating mouse should take

From Equation 8:
Superiority of a Countermeasure

𝐶!!
(!) = { c | c ∈ C, c ≻ 𝑐! }

Example of corresponding Python code to calculate and
compare the magnitudes of three arrays of events data
collected by the self-navigating mouse’s sensors on its
front, left, and right, to determine which is the superior
way to be taken by the self-navigating mouse; that is, the
superior countermeasure (direction) that would allow that
higher value to be manifested.

The CT concept of evaluation can also be applied by the software programmer to determine the

superiority of a decision scheme (see Equation 9). Usually, in a self-navigating autonomous machine, the
evaluation is not determined by the human programmer, but by the machine itself using algorithms that are
useful for machine vision, image pattern recognition, path finding, and so forth. In practical terms, the
programmer might simply need to “feed” the data (most probably contained in the data structure of a matrix) to
the machine learning or deep learning algorithm. Comparison of numerous multi-dimensional matrices (multiple
decision schemes) can then be performed by the machine learning or deep learning algorithm inside the
self-navigating autonomous mouse to determine the “superiority” of a decision scheme (one single matrix) in a
set of decision schemes (numerous matrices).
Computational Thinking in Decision-making: Decomposition

The CT concept of decomposition could be applied in decision-making with multiple objectives (see
Equation 12) in the software-based self-navigating mouse. For instance, if there are two objectives, and if the
self-navigating mouse is required to reach the Action symbol, as well as the cheese symbol on the board, it

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 42

would be required to break down the steps to be taken to achieve those two objectives.
Computational Thinking in Decision-making: Algorithmic Thinking

In addition to the CT concept of decomposition in decision-making for multiple objectives, the CT
concept of algorithmic thinking, in conjunction with the concept of utilising the threshold values of decision
effects (see Equation 13) could be applied to the software-based self-navigating mouse so that it can “think”
about using similar methods for reaching multiple objectives, even though the objectives may look different. For
example, the same method that the software-based self-navigating autonomous mouse can use to reach the
Action symbol, that is, by comparing countermeasures to determine which one is superior (for instance, one path
which uses fewer steps), can also be applied to reach the cheese. In terms of practical application, the software
programmer might wish to consider using a Time Series (see Equation 15) so that the events, countermeasures,
decision schemes, and decision effects considered and taken (or considered but not taken) by the software-based
self-navigating mouse can be “stored” for analysis to determine which next step to take (forward, left, or right).

Table 5: Python code to utilise a Time Series and make a one-step prediction
From Equation 15:
Data stored in a Time Series

𝑢!"
! = (𝑢!"

! 1 , 𝑢!"
! (2), … ,

𝑢!"
! (ℎ))

Example of corresponding Python code which utilises the concept of Time
Series to apply the CT concept of generalisation to analyse the pattern in
the data, and subsequently make a one-step prediction

Computational Thinking in Decision-making: Generalisation

Finally, the CT concept of generalisation in decision-making might be implemented in the
software-based self-navigating mouse in a manner that can combine the sets of events, countermeasures,
decision schemes, and objective effects into a decision-making algorithm, so that they can be utilised in problem
solving, for example, to autonomously predict the best route to take in new mazes. Practically, one of the ways
might be for the programmer to consider implementing a LSTM (Long Short-Term Memory) recurrent neural
network, which is a cornerstone of Machine Learning/Deep Learning for predicting new sequences (and in this
context: paths) based on older data. The programmer may wish to consider implementing code to develop
persistence (a form of memory) and perform analysis on the data from events, countermeasures, decision
schemes, and decision effects, so that the self-navigating mouse can develop its own algorithmic thinking. More
information about coding LSTM recurrent neural networks in Python can be perused at Brownlee's (2016)
website.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 43

4. Conclusion and future research
Grey-based mathematical equations have been utilised in the present paper to depict what might be

involved in decision making during an unplugged CT activity. Mathematical modelling of decision-making
might contribute to addressing a gap in the extant literature of CT research that has insofar not been studied
much. An analytical approach using mathematical equations and descriptions of CT has been offered in this
paper as a potential form of rudimentary scaffolding, which might be useful to facilitators and learners of
CT-related activities. The mathematical equations of the decision-making processes posited in this theoretical
manuscript may serve as a base for programmers, regardless of the programming language they prefer, should
the facilitator wish to ask the learners to embark on a software programming activity that is closely associated to
the unplugged CT activity.

Indeed, teachers/instructors might not need the mathematical equations in the present paper to teach an
activity such as navigating in the maze. They might, however, find them to be useful as scaffoldings if software
programming by the learners is involved after the conclusion of the unplugged CT activity. The hypothesis is
that, if the teachers are exposed to a math model, they can be made aware of what the decision options are, and
how to interpret the actions and results provided by students. Further, they might be more aware of the
ramifications of the unplugged activity through its representation as a mathematical model. We hope future
research can explore this hypothesis. Better still, if some instructors can create the model or fragments of the
model, they can become even more conversant of the content knowledge to be taught and can build on the model
to do the programming of the algorithm.

The existence of the problem-solving conceptual framework that has come to be referred to as
computational thinking cannot be in doubt; however, what that structure is, might be another matter that is
worthy of further research and exploration. As researchers seek to understand more about the various aspects of
computing education, the utilisation of mathematical modelling might play a significant role in CT by, for
example, describing it in more formal terms via mathematical equations to uncover aspects of CT that might be
useful for programmers; should the need arise to implement them systematically in software code.

Acknowledgements
Support for this paper was provided by the project grant for: Researching and developing pedagogies using
unplugged and computational thinking approaches for teaching computing in the schools (Project Number: OER
04/16 LCK). Many thanks to Peter Seow, Longkai Wu, and Liu Liu for their help in designing and conducting
the programmable toy mouse unplugged activity in a classroom.

References
Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A Digital Age Skill for Everyone.

Learning and Leading with Technology, 38(6), 20–23.
Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer Science Unplugged: School Students

Doing Real Computing Without Computers. Journal of Applied Computing and Information Technology,
13(1), 20–29.

Boticki, I., Barisic, A., Martin, S., & Drljevic, N. (2013). Teaching and learning computer science sorting
algorithms with mobile devices: A case study. Computer Applications in Engineering Education, 21, 41–
50.

Brown, J. P. (2015). Visualisation Tactics for Solving Real World Tasks. (G. A. Stillman, W. Blum, & M. S.
Biembengut, Eds.), Mathematical Modelling in Education Research and Practice: Cultural, Social and

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 44

Cognitive Influences.
Brownlee, J. (2016). Making Predictions with Sequences. Retrieved February 6, 2018, from

https://machinelearningmastery.com/sequence-prediction/
Bundy, A. (2007). Computational Thinking is Pervasive. Journal of Scientific and Practical Computing, 1(2),

67–69.
Busemeyer, J. R., & Johnson, J. G. (2004). Computational models of decision making. In Blackwell handbook of

judgment and decision making (pp. 133–154).
Cetin, I., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. Journal of Mathematical

Behavior, 47(November 2016), 70–80. https://doi.org/10.1016/j.jmathb.2017.06.004
Chung, T. J. (2010). Computational fluid dynamics. Cambridge university press.
Cortina, T. J. (2015). Broadening Participation: Reaching a broader population of students through “unplugged”

activities. Communications of the ACM, 58(3), 25–27. https://doi.org/10.1145/2723671
Curzon, P., McOwan, P. W. P., Plant, N., & Meagher, L. R. (2014). Introducing teachers to computational

thinking using unplugged storytelling. Proceedings of the 9th Workshop in Primary and Secondary
Computing Education, 89–92. https://doi.org/10.1145/2670757.2670767

D’Ambrosio, U. (2015). Mathematical Modelling as a Strategy for Building-Up Systems of Knowledge in
Different Cultural Environments. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical
Modelling in Education Research and Practice: Cultural, Social and Cognitive Influences (pp. 35–44).

Deng, J. (1989). Introduction to Grey System Theory. The Journal of Grey System, 1, 1–24.
du Boulay, B., O’Shea, T., & Monk, J. (1981). The black box inside the glass box: presenting computing

concepts to novices. International Journal of Man-Machine Studies, 14, 237–249.
Feaster, Y., Segars, L., Wahba, S., & Hallstrom, J. (2011). Teaching CS unplugged in the high school (with

limited success). ITiCSE, 248–252. https://doi.org/10.1145/1999747.1999817
Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013). Computational thinking in educational activities.

Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education -
ITiCSE ’13, 10. https://doi.org/10.1145/2462476.2466518

Griffin, J. M. (2016). Learning by Taking Apart: Deconstructing Code by Reading, Tracing, and Debugging.
Proceedings of the 17th Annual Conference on Information Technology Education (SIGITE ’16), 148–153.
https://doi.org/10.1145/2978192.2978231

Grover, S. (2015). “Systems of Assessments” for Deeper Learning of Computational Thinking in K-12. Annual
Meeting of the American Educational Research Association, (650).

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for
middle school students. Computer Science Education, 25(2), 199–237.
https://doi.org/10.1080/08993408.2015.1033142

Hu, C. (2011). Computational thinking. Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’11, 223–227.
https://doi.org/10.1145/1999747.1999811

Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. Oxford
University Press.

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in school-wide
computational thinking: A cross-case qualitative analysis. Computers and Education, 82, 263–279.
https://doi.org/10.1016/j.compedu.2014.11.022

Kawakami, T., Saeki, A., & Matsuzaki, A. (2015). How Do Students Share and Refine Models Through Dual

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 45

Modelling Teaching: The Case of Students Who Do Not Solve Independently. (G. A. Stillman, W. Blum, &
M. S. Biembengut, Eds.), Mathematical Modelling in Education Research and Practice: Cultural, Social
and Cognitive Influences.

Kordaki, M., Miatidis, M., & Kapsampelis, G. (2008). A computer environment for the learning of sorting
algorithms: Design and pilot evaluation. Computers & Education, 51, 708–723.

Liu, S., & Lin, Y. (2010). Grey Systems: Theory and Applications. Berlin: Springer-Verlag.
Liu, S., Yang, Y., & Forrest, J. (2016). Grey Data Analysis. Singapore: Springer-Verlag.
Lu, J. J., & Fletcher, G. H. L. (2009). Thinking About Computational Thinking. In SIGCSE ’09 Proceedings of

the 40th ACM technical symposium on Computer science education (pp. 260–264). Chattanooga, TN, USA.
https://doi.org/10.1145/1539024.1508959

McGill, T. J., & Volet, S. E. (1997). A Conceptual Framework for Analyzing Students’ Knowledge of
Programming. Journal of Research on Computing in Education, 6504(December), 37–41.
https://doi.org/10.1080/08886504.1997.10782199

Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition,
15(3), 238–246. https://doi.org/10.3758/BF03197722

Monteiro, I. T., Salgado, L. C. de C., Mota, M. P., Sampaio, A. L., & de Souza, C. S. (2016). Signifying
software engineering to computational thinking learners with AgentSheets and PoliFacets. Journal of
Visual Languages and Computing, (February 2016), 1–21. https://doi.org/10.1016/j.jvlc.2017.01.005

Ng, K. E. D., & Stillman, G. A. (2015). Exploring Interconnections Between Real-World and Application Tasks:
Case Study from Singapore. (G. A. Stillman, W. Blum, & M. S. Biembengut, Eds.), Mathematical
Modelling in Education Research and Practice: Cultural, Social and Cognitive Influences.

Oxford Living Dictionaries. (2017). Countermeasure. Retrieved December 4, 2017, from
https://en.oxforddictionaries.com/definition/countermeasure

Pretz, J. E. (2008). Intuition versus analysis: Strategy and experience in complex everyday problem solving.
Memory & Cognition, 36(3), 554–566. https://doi.org/10.3758/MC.36.3.554

Reber, P., & Kotovsky, K. (1997). Implicit learning in problem solving: The role of working memory capacity.
Journal of Experimental Psychology: General, 126(2), 178.

Rodriguez, B. R. (2015). Assessing Computational Thinking in Computer Science Unplugged Activities.
Colorado School of Mines. https://doi.org/10.1017/CBO9781107415324.004

Selby, C. (2013). Computational Thinking : The Developing Definition. ITiCSE Conference 2013, 5–8.
Selby, C. (2015). Relationships: Computational Thinking, Pedagogy of Programming, and Bloom’s Taxonomy.

Proceedings of the Workshop in Primary and Secondary Computing Education, 80–87.
https://doi.org/10.1145/2818314.2818315

Somers, J. (2017). The Coming Software Apocalypse A small group of programmers wants to change how we
code—before catastrophe strikes. Retrieved October 3, 2017, from
https://www.theatlantic.com/technology/archive/2017/09/saving-the-world-from-code/540393/

Stillman, G. A., Blum, W., & Biembengut, M. S. (Eds.). (2015). Mathematical Modelling in Education Research
and Practice: Cultural, Social and Cognitive Influences.

Taub, R., Armoni, M., & Ben-Ari, M. (2012). CS Unplugged and Middle-School Students’ Views, Attitudes,
and Intentions Regarding CS. ACM Transactions on Computing Education, 12(2), 1–29.
https://doi.org/10.1145/2160547.2160551

Taub, R., Ben-Ari, M., & Armoni, M. (2009). The effect of CS unplugged on middle-school students’ views of
CS. ACM SIGCSE Bulletin, 41(3), 99. https://doi.org/10.1145/1595496.1562912

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 46

Taylor, D. W. (2013). Decision making and problem solving. In Handbook of organizations (pp. 48–86).
Thies, R., & Vahrenhold, J. (2013). On plugging “unplugged” into CS classes. Proceeding of the 44th ACM

Technical Symposium on Computer Science Education - SIGCSE ’13, 365–370.
https://doi.org/10.1145/2445196.2445303

Thies, R., & Vahrenhold, J. B. (2012). Reflections on outreach programs in CS classes: Learning objectives for
“unplugged” activities. SIGCSE12 Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education, 487–492. https://doi.org/10.1145/2157136.2157281

Ugur, Ö. (2008). An introduction to computational finance. World Scientific Books.
Waterman, M. S. (1995). Introduction to computational biology: maps, sequences and genomes. CRC Press.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining

Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and
Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal
Society of London: Mathematical, Physical and Engineering Sciences, (July), 3717–3725.
https://doi.org/10.1109/IPDPS.2008.4536091

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33–35.
Wolfram Research Incorporated. (2017). Mathematica, Version 11.2, (2017). Champaign, IL.
Zagami, J. (2012). Seeing is understanding: The effect of visualisation in understanding programming concepts.

Lulu.com.
Zsambok, C. E. (2014). Naturalistic decision making. Chicago: Psychology Press.

International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2
ISSN 2513-8359

 47

