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Abstract 

Although teachers need to assess computational thinking (CT) for computer science education in K-12, it is not 

easy for them to evaluate students’ programs based on the perspective. The purpose of this study was to investigate 

students’ CT skills reflected in their Scratch programs. The context of the study was a middle school coding club 

where seven students voluntarily participated in a five-week coding activity. A total of eleven Scratch programs 

were analyzed in two aspects: problem decomposition and program development. Results revealed that students 

demonstrated proper decompositions of problems, which supported program development processes. However, in 

some cases, students failed to decompose necessary parts as their projects got sophisticated, which resulted in the 

failure or errors of programs. Regarding program development, algorythmic thinking had been identified as the 

area to be improved. Debugging and evaluation of programs were the necessary process students needed to 

practice. Implications for teaching CT skills were discussed.  

Keywords: computational thinking, Scratch, decomposition, computer science education, block-based 

programming 

 

1. Introduction 

Since Wing (2006) suggested that computational thinking (CT) is “a fundamental skill for everyone, not just for 

computer scientists (p. 33),” many stakeholders have tried to develop a sustainable curriculum that encourages 

more students to learn programming earlier. However, the deficiency of K-12 computer science (CS) education is 

not getting better (Google & Gallup, 2015). To compensate for the lack of CS education, many researchers and 

teachers have offered after-school activities, such as coding clubs (e.g., Smith, Sutcliffe, & Sandvik, 2014). 

Researchers have suggested that young students can engage in CT concepts and practices through block-based 

programming (BBP), such as Scratch and Alice (Bau, Gray, Kelleher, Sheldon, & Turbak, 2017; Sáez-López, 

Román-González, & Vázquez-Cano, 2016). BBP provides a visual representation of programming, which reduces 

the cognitive load by excluding the chances of syntax errors, using commands similar to spoken languages, 

providing immediate feedback, and visualizing abstract concepts (Maloney, Resnick, Rusk, Silverman, & 

Eastmond, 2010). Because of its educational features, the use of BBP has increased in introductory CS education 

courses (Aivaloglou & Hermans, 2016). However, considering the limited amount of time, teachers’ expertise, 

voluntary engagement in activities, and different skill levels among the students, there are concerns about their 

effectiveness (Buss & Gamboa, 2017).  

CT requires problem-solving skills that involve analytical thinking to design systems (Wing, 2006). Thus, the core 

CT concepts, including decomposition (break problems down into smaller parts) and abstraction (model the core 

aspects of problems), are the target capacities of K-12 CS education (Liu, Cheng, & Huang, 2011). Although 

utilizing BBP has been encouraged for its effect of enhanced understanding of programming concepts, logic, and 
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computational practices (Sáez-López et al., 2016), there is a scarcity of studies that suggest pedagogical guidance 

based on students’ CT skills in K-12 CS education contexts.  

One of the reasons for the lack of pedagogical guidance may be due to the difficulty of evaluating CT skills that 

are embedded in the programs that students create. For example, a student may not be successful in decomposing 

the main task and developed an ineffective program that included errors. Without direct communication regarding 

the student’s solution plan and conceptual understanding of the code, it will be difficult to pinpoint the reasons 

for the errors by only examining the outcome of the thinking process: successful or unsuccessful programs 

(Brennan & Resnick, 2012). It is also possible that multiple factors affect the problem-solving processes and the 

quality of the program in turn.  

To evaluate CT skills, we need a precise definition and evaluation frame. Although many scholars have defined 

CT and identified its components (D. Barr, Harrison, & Conery, 2011; Shute, Sun, & Asbell-Clarke, 2017; Wing, 

2006), it has not been sufficiently suggested how instructors can evaluate the CT concepts based on students’ 

programs. Additionally, valid evaluation rubrics to measure computational thinking have not been established yet. 

As Buss and Gamboa (2017, p. 201) suggested, computational thinking is “a rich mixture of cognitive skills and 

attitudes” that should be evaluated from multiple aspects rather than one simple result: success or failure. To 

provide meaningful feedback and guidance, teachers need to assess computational thinking in detail and figure 

out students’ misconceptions.  

Considering the limited evaluations in CS education, the current study aims to examine CT skills reflected in 

students’ programs, which will suggest an evaluation framework of CT. This study also suggests instructional 

strategies to be considered in secondary CS education. 

 

2. Literature review 

 

2.1 Computational thinking 

The concept of CT has been refined through the collaboration of scholars since Wing (2006) coined the term by 

identifying its core elements as “solving problems, designing systems, and understanding human behavior by 

drawing on the concepts fundamental to computer science” (p. 33). As Wing’s definition emphasizes, CT does not 

simply refer to computer programming skills, but is more closely related to the way we solve problems by utilizing 

the power of computing. From this perspective, the International Society for Technology in Education (ISTE) and 

the Computer Science Teachers Association (CSTA) defined CT as a problem-solving process that includes: 

formulating problems, logically organizing and analyzing data, representing data through abstractions, evaluating 

possible solutions, automating solutions through algorithmic thinking, and generalizing solutions (D. Barr et al., 

2011; CSTA & ISTE, 2011). The definition provides a framework for K-12 educators to design CT activities and 

evaluate CT skills. Based on this common understanding, many researchers have reached an agreement that CT 

involves the thought processes of decomposition, abstraction, generalization, algorithmic thinking, and debugging 

(Angeli et al., 2016). 

Considering the context of problem-solving, we can imagine how CT is associated with students’ thought 

processes. When students have a problem to solve or a task to achieve, they will break the problem (or the task) 

into smaller parts so they can manage their cognitive resources effectively (decomposition of problems). After 

figuring out the necessary functions or solutions of each part, they will devise a sequence of the solutions to 

identify the order of the actions and the conditions of control (algorithmic thinking). If students consider the 

efficiency and utility of the problem-solving process, they will try to create a model by extracting the fundamental 

characteristics of the solutions (abstraction) and generalize the solutions by parameterizing the variables 

(generalization). After developing the solutions, students will test whether each action corresponds to the intended 

instruction and fix the errors once they occur (debugging).  

Although the definition of CT and its components have been refined for over a decade, there is a lack of evaluation 

criteria and analysis methods to reveal the levels of CT. Because CT involves problem-solving, it is difficult to 

measure CT through a simple test. In the following section, we will review a few trials to evaluate decomposition 

and program development process in problem-solving contexts. 

2.2 Decomposition of problems 

The core function of decomposition is to identify subtasks and define the objects and methods required in each 

decomposed task to solve a problem (V. Barr & Stephenson, 2011). How can we measure the decomposition 

process while students solve a problem?  Decomposing a problem is required to design a solution. Instructors 



 

 

 

 

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1 

ISSN 2513-8359 

 

5 

can evaluate decomposition by examining students’ solution plans. Kwon (2017) analyzed students’ solution plans 

and identified their misconceptions of programming. The study revealed cases where students (novice 

programmers) did not consider all the possible solutions while decomposing a problem, failed to identify the 

specific functions required, and designed inefficient solutions. Students’ insufficient decomposition of problems 

could be attributed to the lack of knowledge schemas and the higher cognitive load required in their thought 

processes (Kwon, 2017; Robins, Rountree, & Rountree, 2003).  

2.3 Program development (abstraction, generalization and algorithmic thinking)  

Even when students have a clear plan, they often demonstrate an iterative cycle of developing codes: trying out 

codes, changing plans, integrating new ideas, and so on (Brennan & Resnick, 2012). Thus, if we evaluate CT only 

based on the knowledge-based concepts (e.g., sequences, loops, conditional, and events), we will not be able to 

evaluate how students use or apply the knowledge into their programs (Davies, 1993).  

Students can demonstrate their CT skills during the process of developing programs and through artifacts (Lee, 

2010). In this sense, scholars have recently suggested various ways to evaluate CT based on student-developed 

programs. For example, Moreno-León, Robles, and Román-González (2015) introduced Dr. Scratch 

(http://www.drscractch.org) that automatically evaluates Scratch programs. Dr. Scratch allows teachers and 

students to evaluate programs in terms of the CT concepts: abstraction and problem decomposition, logical 

thinking, synchronization, parallelism, algorithmic notions of flow control, user interactivity, and data 

representation. It is noteworthy that Dr. Scratch assesses CT concepts by evaluating students’ programs rather than 

asking their knowledge (e.g., Grover & Basu, 2017; Meerbaum-Salant, Armoni, & Ben-Ari, 2013). However, 

there is a limitation in that Dr. Scratch does not consider the purpose and functionality of the codes that are related 

to the effectiveness and efficiency of programs.  

Recently, Kwon, Lee, and Chung (2018) evaluated CT by manually analyzing students’ Scratch programs in 

consideration of programming goals and tasks. They found that students often added unnecessary sets of programs, 

which caused a redundancy of codes that increased the complexity and the chances of errors. They also suggested 

the positive relation between the ability to decompose problems and the quality of the solutions. It is suggested 

that evaluating CT skills in authentic tasks where students apply the CT skills to solve problems.  

 

3. Purpose of study 

The current study aimed to examine students’ Scratch programs from two perspectives: problem decomposition 

and program development (abstraction, generalization, and algorithmic thinking). The findings of the study would 

provide insight to build an evaluation framework for CT. This study, therefore, addressed the following research 

questions: 

1. How do students decompose tasks for Scratch programs? 

2. How do students create Scratch programs by utilizing abstraction, generalization, and algorithmic 

thinking?  

 

4. Method 

4.1 Participants 

Seven middle school students (six girls and one boy) participated in the after-school coding event. All students 

learned in “Hour of Code” during their school curriculum. Four students had experienced coding with BBP, such 

as Scratch or Tynker, before participating in the event. Students rated their coding skill as basic (2.1 out of 5 in 

average) at the beginning of the event. They were not given compensation for their participation in the study. The 

study was approved by the University Institutional Review Board (#1802262819) and public school corporation.  

 

4.2 Context of Learning 

Partnering with the middle school coding club, a researcher (the first author) from a university in the Midwest 

developed the curriculum for the five-week coding event: “Going Beyond the Hour of Code.”  The event was 

designed for middle school students to learn CT skills by developing games, quizzes, and applications using a 

BBP called Scratch (https://scratch.mit.edu). The curriculum was designed to let students represent a problem and 

solve it using a computer program, break a problem down into smaller parts, design a series of instructions to 

formulate the solution, and apply problem-solving skills to a wide variety of problems. No prior coding experience 

was required for the students during the recruiting process. Before the event, the students participated in an 
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introductory session that explained the purpose of the event and an opportunity to participate in the research. Table 

1 describes the contents of the curriculum. 

Once the students gathered in the computer lab, the researcher explained the theme for the week, and demonstrated 

how to create a corresponding Scratch project. The researcher emphasized the main CT skills during the 

demonstration and encouraged students to develop a Scratch project that fulfilled the requirements. Typically, the 

researcher led the demonstration for 20 to 30 minutes, and students had 45 to 55 minutes to create their own 

Scratch project.  

 

Table 1. Overview of Coding Event Curriculum 

Week Theme CT skills Required components Tasks to achieve 

1 Dance 

(Loop) 

Develop a 

program 

repeating 

particular 

actions by 

utilizing loops 

• Changing the costumes of 

the sprite 

• Playing music 

• Changing the background 

• Moving the sprite 

repeatedly 

Create a dancing spite and play 

music. 

Change the background 

appropriately. 

2 Maze 

(Conditions) 

Develop 

decision 

making skills 

by utilizing the 

if block 

• Motion blocks  

• Sensing block (touching 

color, touching “object”) 

• If block (utilizing sensing 

and motion blocks) 

Create a maze game.  

Let the sprite (mouse) come 

back to the beginning point 

when either it hits a maze or 

another sprite (cat). 

3 Catch & 

Avoid 

(Data) 

Define 

variables and 

use them for 

decision-

making 

processes 

• Making a variable 

• Updating values of the 

variable 

• Examples of using 

variables in the if block 

Create a game that increases 

the scores when the user 

completes a task. 

Specify how many trials (lives) 

that the user has. 

4 Quiz 

(Patterns)  

Receive user’s 

input 

Use a 

broadcast 

block to 

control other 

sprites 

• Ask for user responses and 

receive inputs 

• Make a decision based on 

the inputs 

• Broadcast commands to 

other sprites 

 

Create a quiz game  

Decide whether the answer is 

correct and increase the score 

accordingly. 

Change other sprites’ costumes 

based on the answer. 

 

4.3 Data 

Each week, students submitted their Scratch projects in a learning management system, Canvas. A total of 18 

projects were collected, but the researchers only analyzed the projects of the students who submitted an informed 

consent form. So, a total of 11 projects from four students were analyzed for this study. The names are pseudonyms.  

 

4.4 Analysis 

To have an in-depth understanding of the Scratch programs that the students created, we analyzed them in terms 

of decomposition and program development reflected in the programs. The unit of analysis was a semantic unit 

that included one or several code blocks executing a particular task. To identify decomposition, we considered the 

alignments of sub-tasks and sets of blocks. To evaluate program development, we evaluated sets of blocks in terms 

of their functionality and efficiency.  

   

5. Results 

Scratch projects were analyzed based on two CT aspects: decomposition and developing programs (abstraction, 

generalization, and algorithmic thinking). The results are presented by the weekly theme.  

5.1 Week 1 Loops: Decomposition 
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5.1.1 Changing a sprite’s look or position  

All the projects showed that the students successfully identified the required tasks to decompose (see Table 2).  

 

 

Table 2. Week 1 decomposition and program development 

Dance (Loop) Make sprites dance by using repeat blocks 

Decomposition of tasks • Changing a sprite’s look or position 

• Making a meaningful story 

Program development • Creating a set of blocks (Motion or Look) to repeat 

• Using a repeat block  

  

 

a  

b 

 

c 

 

d 

 

e 

 

 

f 

 

Figure 1. Code blocks of week 1 

 

5.2 Week 1 Loops: Program development 

5.2.1 Successful aspects 

Boa, and Emily used the ‘switch costume’ block to make the sprites dance, while Susan changes a ball’s size and 

location using the ‘change size’ and ‘position’ blocks. Most of the students successfully utilized the ‘forever’ block 
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to repeat a set of codes to move a sprite.  

We found that a student discovered an alternative way to move a sprite. Kathy used the ‘switch costume’ block to 

make a moving sprite dribble a ball (see Figure 1-a). She changed the location of the sprite in the canvas and 

switched its costumes, which seemed to make it move (see Figure 1-b). After she synchronized the locations of 

two sprites (main character and its glasses), she tried to adjust the ball’s location. At that moment, she did not 

know “move” block but, soon after, realized the block and used it for next tasks (see Figure 1-c).  

 

5.2.2 Issues to be considered 

We found two issues in Susan’s project. First, she used different blocks to move the ball and change its size (see 

Figure 1-d). She already knew how to use condition blocks to check the position of a sprite to control it from 

crossing the boundaries of the stage (see Figure 1-f). She also used variables and randomized position values (see 

Figure 1-e). The code blocks demonstrated her abstraction skills to program the decomposed tasks. However, there 

was an error in the ‘if’ statement: x position < -200 or > 200 (see Figure 1-f). In order to limit the range of the 

sprite, the statement should be x position > -200 or < 200. It seemed that Susan did not check the logical expression 

and failed to recognize the error.  

 

5.3 Week 2 Conditions: Decomposition 

To make a maze game, they needed to identify the events that would occur during the game, including allowing 

the user to move the main sprite with keystrokes, resetting the game when the sprite touched a maze or was hit by 

an object, and finishing the game when a sprite reached the finish line. The Scratch projects showed that Kathy 

and Susan decomposed the necessary events accordingly (see Table 3). Additionally, Kathy developed two 

different stages in her maze game that was an advanced feature among other projects. 

 

Table 3. Week 2 decomposition and program development 

Maze (Conditions) Develop a maze game that makes decisions as pre-defined events occur 

by utilizing conditions 

Decomposition of tasks Identifying required events with conditions 

• Moving sprites according to keystrokes 

• Resetting the game when being hit by objectives 

• Resetting the game when touching the maze 

• Ending a game when arrive at the finish line 

Program development Using forever and if blocks to create the event handlers 

• with arrow keys 

• with touch  

 

5.4 Week 2 Conditions: Program development 

Regarding the decomposed events, students should utilize the ‘forever’ and ‘if’ blocks with two different 

conditions, such as the ‘when a key pressed’ and ‘touching’ blocks, to develop a maze game. 

 

5.4.1 Successful aspects 

Kathy utilized a ‘forever’ block to nest several ‘if’ blocks that identified the events, such as the “key pressed”, 

“touching a color”, and “touching another sprite” blocks (see Figure 2-a). All the event handlers in her program 

shared the same structure (if blocks nested in forever block that monitored a particular event). Thus, Kathy was 

able to abstract the structure of the codes for each event. Susan used a ‘broadcast’ block to reset the game when 

the main sprite touched the maze (blue color) (see Figure 2-c and 2-f). 

 

5.4.2 Issues to be considered 

Susan did not use a ‘forever’ block to check if the main sprite touched a color. Instead, she used a pre-defined 

event block ‘When key pressed’ with the ‘if’ block (see Figure 2-c). The way Susan utilized the event handlers 

required four duplicated codes for four different key presses. She also had an unnecessary block, ‘wait 0.6 secs.’  

The results suggested that Susan failed to find an efficient way to check for the specific condition (i.e., touching 
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color).  

Susan wanted the sprite to say, “You Win!” when it touched the ending spot that was a green dot. However, she 

used the ‘repeat until <touching color green>’ block (see Figure 2-e). It would be possible that the ‘say’ block was 

inside of the ‘repeat until’ block, which resulted in showing “You Win!” from the beginning repeatedly. Because 

she did not resolve the issue, she moved the say block to out of the ‘repeat until’ block. The issue was related to 

the lack of understanding of envent handlers. She should have used a ‘forever’ and ‘if’ block to make the event 

handler work as intended.  

 

5.4.3 Additional Findings 

Because Kathy developed multiple stages, she needed to change the backdrop and sprites accordingly. She wanted 

to hide an object during the final stage came after the main sprite passed the maze. However, she could not hide 

the objects used in the maze. It was related to the synchronization of codes in Scratch. The researcher asked for 

her intention and suggested that she use the ‘broadcast’ block, which she hadn’t learned at that moment. She easily 

understood the use of the ‘broadcast’ block to make the objects disappear after a short conversation with the 

researcher (see Figure 2-b). This finding suggested the importance of tailored guidance according to student needs 

for discovery learning. As mentioned, Kathy, including other students, tried to discover solutions that they had not 

learned yet while developing programs.  

 

 
a 

 

 
b 

 
d 

 
c 

 
e 

 
f 

Figure 2. Code blocks of week 2 

 

5.5 Week 3 Data: Decomposition 

The primary objective of week 3 was to update user scores according to the user’s performance in a game. The 

decomposed tasks to create this game were defining a mission to accomplish (e.g., catching an objective while 

avoiding another object), gaining or losing points and finishing a game according to the score (such as changing 

the levels of game or success/failure based on the accumulated score), showing or hiding an object in random 
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locations, and moving sprites with keystrokes (see Table 4). Both Kathy and Susan were able to decompose the 

main task to smaller sub-tasks, which allowed them to organize code blocks based on the sub-tasks. Susan, 

however, did not identify the condition to finish the game. 

 

 

Table 4. Week 3 decomposition and program development 

Catch & Avoid (Data) Develop a game that saves scores and makes a decision based on the scores. 

Decomposition of tasks • Defining a mission (e.g., touch or avoid specified objects) 

• Gaining or losing a score when accomplish or fail a mission 

• Moving sprites according to keystrokes  

• Showing/hiding objects in random locations 

• Finishing game according to the score 

Program development • Using variables to save and update values 

• Using forever and if blocks to create the event handlers 

o with arrow keys 

o with touch 

• Using random block to display objects in random places 

• Using if block to check the condition to finish a game 

 

5.6 Week 3 Data: Program development 

 

5.6.1 Successful aspects 

The analysis of code revealed that Kathy considered the efficiency of the codes and selected a proper way to fulfill 

the objective. In contrast of the previous program, Kathy separated her code into five sets according to their 

purposes, such as touching obstacles, accomplishing a level, changing the stages of game, and ending the game 

(See figure 3-a). Although the researcher did not explicitly mention the concept of parallelism while demonstrating 

an exemplary program, she grasped the concept and organized her codes as the tasks decomposed.  

Kathy realized that there were several different ways to achieve a particular task. For example, she used the value 

of variables to determine when a certain sprite should disappear. In her code, all the sprites were set to disappear 

when the value of “life” became less than 1 (see Figure 3-b). She made multiple stages of the game, which required 

changing the backdrops and sprites accordingly. She utilized ‘broadcast’ blocks to fulfill the requirement. The 

‘broadcast’ blocks sent out messages when a level was completed (e.g., Level 1: Completed) and each sprite 

reacted on the messages (see Figure 3-c and 3-d).  

Susan defined a variable and used a ‘random’ block to assign random values to the variable. By using this method, 

she could change the backdrops randomly (see Figure 3-e). In this process, Susan gave each backdrop a numerical 

value that cooperated with a random number. It is noteworthy that she utilized the name of the backdrops for a 

computational purpose.  

 

5.6.2 Issues to be considered 

Kathy did not figure out the conditional logics while developing multiple decision-making processes by utilizing 

‘if’ blocks. As figure 3-c illustrates, she included three ‘if’ blocks to identify the criteria of three decision making 

points: Score > 12, Score > 24, and Score >30. Considering the flow of game, we assume that Kathy wanted to 

identify the threshold of the levels as follows: if Score = 13, Score = 25, and Score = 31. Kathy might have 

assumed that the computer would run the second condition when the score got to 25. However, the ‘if’ blocks in 

the first conditional statement would never proceed to the next conditions because the first condition would be 

“true” for other conditions. The results suggests that students can make mistakes when they assume that a 

computer works as humans think (Kwon, 2017; Pea, 1986). To overcome egocentrism in programming (Pea, 1986), 

it is necessary for students to distinguish the intent of the programmer and the actual instructions that are explicitly 

programmed into the code.  
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a 

 

c 

 

b 

 

d 

 

e 

 

f 

Figure 3. Code blocks of week 3 

Susan committed an error that caused a conflict for the arrow keys. She used the arrow keys to control the 

movement of the sprite, while assigning the left and right keys to change costume of the sprite as well (see Figure 

3-f). Although she successfully decomposed the tasks, she failed to consider the whole program and did not figure 

out how the code would conflict when a single key had two functions. Considering the limitation of novice 

programmer’s cognitive capacity, providing a concrete model representing the codes and encouraging students to 

describe how the codes will run in their words will be beneficial (Mayer, 1981).  
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5.7 Week 4 Patterns: Decomposition 

To create a quiz program, students needed to consider the following tasks: asking questions, receiving user inputs, 

evaluating the inputs, and providing feedback (see Table 5). Because there were multiple questions in a quiz set, 

the tasks should be repeated with the same process. To create an efficient program, students should identify the 

patterns of the tasks and develop code blocks that could be used multiple times with different contents, such as 

questions and correct answers. As an exemplary case, Kathy created four different categories with different sets 

of questions. Kathy successfully decomposed the tasks and identified patterns to develop an efficient program. 

However, Emily failed to organize the sub-tasks required to check user-entered answers and provide feedback.  

 

Table 5. Week 4 decomposition and program development 

Quiz (Patterns) Make a quiz that asks multiple questions and provides feedback accordingly 

Decomposition of tasks • Asking questions 

• Checking answers entered by users 

• Providing feedback according to the answers 

Program development • Using ask block to show questions 

• Using if-else block to compare user inputs and correct answers 

• Using broadcast block or other blocks to provide feedback   

 

5.8 Week 4 Patterns: Program development 

 

5.8.1 Successful aspects 

Kathy successfully demonstrated her abstraction skills in her coding. As Figure 4-a illustrates, she used three sets 

of blocks for one question: ‘ask’, ‘if-else’, and ‘broadcast’ blocks. For example, the ‘if-else’ block evaluated user 

input and decided whether it was correct or incorrect. The set of these three blocks were repeated for the other 

questions. Her use of ‘broadcast’ blocks demonstrated her abstraction skill. As possible results of user input, Kathy 

defined two ‘broadcast’ blocks: “Correct Answer” and “Wrong Answer” (see Figure 4-b). As the names of the 

blocks were implied, one sent a message that the user input was correct, while the other sent a message that the 

user input was incorrect. It is noteworthy that Kathy could identify these patterns and developed reusable code 

blocks for every question. Her conditional expression in the ‘if-else’ block demonstrated her understanding of 

conditional logic. Distinctly, she used the ‘logical OR’ expression to consider multiple correct answers (i.e., see 

Figure 4-a), which suggested her advanced computational thinking skill in developing “short” programs while 

considering “multiple cases.” 

 

5.8.2 Issues to be considered 

In contrast, Emily failed to abstract the primary structure of code blocks and made the program complex and 

inefficient. As Figure 4-c illustrates, she did not identify the patterns of the tasks as Kathy did. Without clearly 

decomposing the tasks, she used the nested ‘if-else’ blocks to consider whether the user-entered answers were 

correct or not. It also seemed that she was distracted by other minor features, including the size or costume of the 

sprites that were not the primary tasks of the program. The analysis of her program suggests that students may 

develop inefficient and more complex programs when they fail to decompose the tasks and develop a program 

without a clear plan, such as flowchart.  
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a 

 

c 

 

b 

Figure 4. Code blocks of week 4 

6. Discussion and conclusion 

The findings showed that students quickly grasped the concepts of sequence including repeat and decomposed the 

required subtasks for simple projects. The abstraction and parallelism skills have been progressively improved as 

they practiced. On the other hand, some students failed to decompose sub-tasks for sophisticated games and debug 

errors in their codes. If they tested their program more often, they would have a chance to fix the errors. It seems 

challenging for them to make a conditional statement more efficiently (e.g., expressing multiple conditions 

exclusively). In addition, the condition statements with operators were not logical to determine the correct 

conditions. The challenges found in Scratch programs yield numbers of implications for teaching CT skills through 

programming based on the results. The implications include instructional considerations for 1) planning activities, 

2) decomposition, 3) logical thinking, and 4) debugging.  

First, guided planning activities are necessary at the beginning of programming. As Emily’s project showed, 

students can focus on a specific task without considering the purpose of the program. We often observed that 

students started programming without a clear plan and tinkered with code blocks by trial and error. We suggest 

that students need to learn how to sketch out their story, and that it should be the first step to design a program 

after learning the core concepts of programming (Kim, Kim, & Kim, 2013). Instructional strategies for planning, 

such as creating a story synopsis or storyboard by writing or drawing, can be adopted (Brennan & Resnick, 2012).  

Second, students need to be trained to decompose a task properly. The findings showed that students struggled 

with decomposing tasks as their project got sophisticated. For example, Susan did not set the end of the game, and 

Emily failed to identify the sub-tasks of the quiz game. Decomposition is an essential process to represent 

problems and identify the tasks to achieve by considering the events, decision-making points, and functions of the 

codes when designing a program (Kazimoglu, Kiernan, Bacon, & MacKinnon, 2012). Without proper 

decomposition, students cannot design appropriate sequences of codes, consider parallelization of multiple codes, 
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and develop modularized code blocks. The decomposition process should be emphasized when teaching 

programming so that students can design small sets of code according to the sub-tasks. Possible activities to help 

decomposition is to create a decomposition chart, or flowchart, using graphic representation (Robins et al., 2003). 

Students can use a worksheet or template to practice the decomposition process.  

Third, students need scaffolding that supports their logical thinking in developing programs. The results revealed 

some issues were related to reasoning in program development. In week 2, for example, Susan duplicated codes 

when checking if the sprite touched a specific color and failed to meet the goal of using ‘forever’ and ‘if’ blocks. 

In week 3, Kathy was not able to figure out the right conditional logic to determine moving to next level due to 

the error in ‘if’ conditions. Additionally, Susan had the conflict with the multiple functions of the keystrokes to 

move the sprit and change its costume. In week 4, Emily could not program correctly nested ‘if’ block to check 

text users entered. Lack of knowledge about the relevant blocks could cause the mistakes; however, the lack of 

logical thinking could yield the errors because most of them failed to write correct logical expressions and develop 

complex conditional structures even though they used the proper blocks. Therefore, we should guide students to 

work on core logic by practicing a simpler version first. As the elaboration theory advocates (Reigeluth, 1999), 

students need to practice simple tasks involving a specific reasoning skill earlier. Also, a condition chart or pseudo 

code could aid with logical reasoning to structure decomposed tasks and determine relevant conditions (Kim et 

al., 2013). 

 

Lastly, instructors need to emphasize debugging practice to students. By only analyzing Scratch programs, we 

were not able to examine students’ debugging process. However, we found that students often overlooked or 

ignored errors that could be detected by simple tests. For example, the errors of conditional statements and the 

conflict of the same keystrokes could have been caught if the students tested the programs. Debugging includes 

not only fixing errors but also increasing the efficiency of code (Robins et al., 2003). The findings suggest that 

students need to evaluate their programs efficiency as well. It could be done by sharing projects with peers and 

evaluating programs together (Wang, Li, Feng, Jiang, & Liu, 2012), such as pair programming.  

 

Although there are many ways to measure computational thinking, the current study has explored the way to 

analyze Scratch programs based on two major computational thinking components (i.e., decomposition and 

program development). The results revealed the challenges students faced during the design and development 

phases of their programs, and instructional strategies were discussed regarding facilitating planning activities, 

decomposition, logical thinking and debugging. However, the measurement of this study is limited, and future 

research based on the limitations should be noted. First, analyzing the larger samples of Scratch programs will 

give us more accurate pictures of students programming patterns and mistakes. Second, other supplementary data 

would provide the students' thinking process in detail (Lye & Koh, 2014). It limits the understanding of the 

programming process (e.g., pattern recognition or debugging) by only analyzing the final products (programs). 

As we suggested earlier, working documents, such as story synopses, decomposition charts, condition charts or 

reflection journals (Robertson, 2011), would be not only helpful for developing programs to students, but also be 

significant data source to the instructors for in-depth analysis of computational thinking. Third, the benefit of 

computational thinking should be investigated. For example, the effect of computational thinking skills on 

problem-solving skills have not been empirically tested, and further research on the relationships among sub-

computational thinking components should be considered. The findings of the further research will contribute to 

better instructions that will enhance computational thinking.  
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Abstract 

Computers and smart devices have become ubiquitous staples of our lives. Computers and computer-controlled 

devices are used in all industries from medicine to engineering, and textile production. One field where computers 

have inevitably spread into is education, and one pre-requisite of controlling computers, or increasing the level 

and efficiency of our control over them, is making human-computer interaction as efficient as possible. This 

process of efficient and effective computer use, known as “Computer-like Thinking” or “Computational Thinking”, 

is seen as a field with the potential to support individual and societal development in our rapidly progressing world 

and to provide significant economic benefits. The fundamental concepts and scope of this field have been 

delineated in diverse manners by different researchers. Similarly, researchers have also advanced distinct critical 

viewpoints towards and potential benefits of computational thinking. This study aims to first define the concept 

of computational thinking by referencing source literature, then analyze the aims of certain criticisms of the field, 

and discuss the fundamental elements of computational thinking and contemporary research on these elements. 

 

 
Keywords: computational thinking, computer-like thinking, computational-informatic thinking  

 

 
1. Introduction

“Computer” as a word references a device that 

“computes”, localized into Turkish as “bilgisayar” by 

Prof. Dr. Aydın Köksal (Keser,2011: p.88). Yet it is 

difficult to claim the same about “computational 

thinking”, which is localized in a number of ways by 

researchers. Özden et al. (2015) use “bilgisayarca 

düşünme”, whereas Yesan, Özçınar and Tanyeri (2017) 

prefer “hesaplamalı düşünme”. Çınar and Tüzün 

(2017), meanwhile, used “bilgi sayımsal düşünme” and 

“bilgi işlemsel düşünme” in their paper. This study will 

primarily use “bilgi işlemsel düşünme” (Computational 

Thinking). The presence of such diverse localization 

attempts is natural. As Piaget has (Bringuier, 1980: 

p.57) specified, definition of terms comes after the 

creation of terms in scientific research. The novelty of 

this field, leading to a lack of uniformity in jargon and 

everyday divergence of terms in common usage, may 

be the explanation of this phenomenon. A similar 

differentiation is observed in the computer science / 

informatics divide separating researchers in the field. 

Whereas European sources prefer the term 

“informatics”, putting information before the devices 

used to process it; American researchers seem to prefer 

“computer science” as their term for this field 

(Kalelioğlu, Gülbahar and Kukul, 2016). Nonetheless, 

despite differences in terminology, it is observed that 

the fundamental focus of this field is the basic 

principles of computer science and their interaction 

with mankind. 

https://doi.org/10.21585/ijcses.v3i1.53
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2. The History of Computational Thinking 

While computational thinking is widely considered to have begun by Wing’s (2006) article on the subject, it was 

first referenced by Papert (1996), as “procedural thinking”.  Papert, then in MIT’s Department of Mathematics, 

in the course of his research on computer and software usage in solving geometric problems claimed that 

computational thinking could be employed in defining the relationship between a problem and its solution and the 

structuring of data. Papert and his colleagues had developed the LOGO programming language in the 1960’s. The 

main aim of this language was aiding students in thinking mathematically and logically. LOGO was at its core a 

constructivist language, accepting learning to be a fundamentally individual activity and explaining it in Piagetian 

terms. Papert (1991: p.1)’s individualization of this concept resulted in the notion of learning-by-making. Papert’s 

adoption of this philosophy is not surprising, considering his experience working alongside Piaget in the Centre of 

Genetic Epistemology in Geneva between 1958 and 1963. LOGO was thus designed as an environment conducive 

to and supportive of Piagetian learning (Logo, 2015). 

 

 

Figure 1. Seymour Papert and LOGO-based robot Turtle. 

 

LOGO and the constructivist ethos behind it were considered to have the potential to transform education when 

the language was first introduced. This potential did not come to life however, as constructivism gradually lost 

traction in the education systems of the UK and the USA (Agalianos, Noss, and Whitty, 2001: p.497). This loss 

was not unprecedented, as other programming languages such as PLATO (Programmed Logic for Automatic 

Operations), CAI (Computer Assisted Instruction), CBT (Computer Based Training) and CAL (Computer Assisted 

Learning) also faced the same fate (Etherington, 2017). 

 

3. Defining Computational Thinking 

As computational thinking is a newborn field, its definition varies from researcher to researcher. Due to this 

variation between academics, this paper will consider practical definitions offered by organizations such as ISTE 

(International Society for Technology in Education) and CSTA (Computer Science Teacher Association) in 

addition to those determined by the academics themselves. Wing (2006, p.33) defines computational thinking as 

“Computational thinking involves solving problems, designing systems, and understanding human behavior, by 

drawing on the concepts fundamental to computer science.”. However, after further revisions [as the original article 

was 4 pages long and many topics were not fully explored.] a different definition was accepted in 2011. According 

to Wing (2011), computational thinking is defined as “Computational thinking is the thought processes involved 
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in formulating problems and their solutions so that the solutions are represented in a form that can be effectively 

carried out by an information-processing agent.”. Table 1 showcases the various definitions of computational 

thinking employed by the contemporary academia.  

 

Table 1. Contrasting Definitions of Computational Thinking. 

Definition Source 

...the thought processes involved in formulating problems and their solutions 

so that the solutions are represented in a form that can be effectively carried 

out by an information-processing agent.  

(Cuny, Snyder, Wing, 2010 

akt. Wing, 2011, p.20) 

Computational thinking is the thought processes used to formulate a problem 

and express its solution or solutions in terms a computer can apply effectively. 

Wing (2014) 

The mental process for abstraction of problems and the creation of 

automatable solutions. 

Yadav et al. (2014) 

Computational thinking is the process of recognising aspects of computation 

in the world that surrounds us, and applying tools and techniques from 

Computer Science to understand and reason about both natural and artificial 

systems and processes. 

Furber (2012) 

Computational thinking has a long history within computer science. Known 

in the 1950s and 1960s as “algorithmic thinking,” it means a mental 

orientation to formulating problems as conversions of some input to an output 

and looking for algorithms to perform the conversions. Today the term has 

been expanded to include thinking with many levels of abstractions, use of 

mathematics to develop algorithms, and examining how well a solution scales 

across different sizes of problems. 

Denning (2009) 

...[Computational Thinking] is to teach them how to think like an economist, 

a physicist, an artist, and to understand how to use computation to solve their 

problems, to create, and to discover new questions that can fruitfully be 

explored. 

Hemmendinger (2010) 

 

These definitions tend to focus on the cognitive performances and processes of individuals. Accordingly, we may 

conclude that activities based on computational thinking are essentially meant to improve cognitive skills and 

support the processes of teaching and learning in the affected individuals. 

 

Researchers in the field have also held workshops with the aim of establishing the true nature of and a working 

definition for computational thinking. Some of these workshops have concluded that a rigorous and consistent 

definition would benefit the field (BİD Workshop Committee, 2011). On the other hand, certain researchers held 

that attempting to define computational thinking in clear-cut terms is unnecessary and that effort should be applied 

in establishing the internal relationships within the computational thinking corpus (Voogt et al., 2015: p.726). 
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“There is no clear-cut definition for CT and the main tension in the attempt to define 

CT has to do with defining the core competencies of CT versus the more peripheral 

competencies. We argue that for the purpose of conceptualizing CT and integrating it in 

education, we should not try to give an ultimate definition of CT, but rather try to find 

similarities and relationships in the discussions about CT (Voget et al., 2015: p.726).” 

 

Whilst a general concept of computational thinking can be established based on these definitions, they offer little 

insight into how computational thinking should be applied in practice in the field of education. Practical definitions 

of computational thinking and its constituents are needed before achievement targets and educational programmes 

can be created in the classroom. CSTA and ISTE have provided activity rubrics for computational thinking in the 

years 2011, 2015 and 2016. Table 2 is a list of these activities, sorted according to keywords.  

 

Table 2. Practical computational thinking activities, curated by ISTE. 

Keywords Source 

Formulating, organizing, analyzing, modelling, 

abstractions, algorithmic thinking, automating, 

efficiency, generalizing, transferring 

ISTE (2011) 

Creativity, algorithmic thinking, critical thinking, 

problem solving, cooperation 

ISTE (2015; Oden et al. 2015) 

Data analysis, abstract thinking, algorithmic thinking, 

modelling, representing data, breaking problems into 

components, automation 

ISTE (2016) (Computational Thinker Definition) 

  

As these definitions show, the activity lists provide a framework for educators, delineating the educational 

achievements which they should aim for and outlining methods for assessment and evaluation of these 

achievements. For example, an educator using these rubrics would know that teaching visual programming tools 

such as Scratch or KODU in class, is not only meant to help students have fun while designing computer games; 

They would also use the experience as a medium for instilling some of the concepts and abilities outlined in Table 

2.  

 

4. Components of Computational Thinking 

The fundamental components of computational thinking are also a source of divergence between researchers. In 

order to establish a baseline for further analysis, components used by various researchers have been provided in 

Table 3.  
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Table 3. Components of Computational Thinking 

Components Source 

Abstraction, Algorithms, Automation, Problem 

Decomposition, Parallelization, Simulation 

Barr & Stephenson (2011) 

Abstraction, Automation, Analysis Lee et al. (2011) 

Abstraction, Algorithmic Thinking, Decomposition, 

Evaluation, Generalization 

Selby & Woollard (2013) 

Abstraction, Algorithms, Decomposition, Debugging, 

Generalization 

Angeli et al. (2016) 

Abstraction, Algorithms, Automation, Problem 

Decomposition, Generalization 

Wing (2006, 2008, 2011) 

 

While the exact components may differ, we believe the essential concepts they represent are largely uniform across 

the field. Computational thinking abilities are essentially the set of skills needed to convert complex, messy, 

partially defined, real-world problems into a form that a mindless computer can tackle without further assistance 

from a human (BCS, 2014, p.3). As such, this paper will use the definitions of abstraction, problem decomposition, 

algorithmic thinking, automation and generalization from amongst the components provided. These definitions 

can be listed as (Humphreys, 2015): 

● Abstraction makes problems or systems easier to think about. Abstraction is the process of making an 

artefact more understandable through reducing the unnecessary detail and number of variables; therefore 

leading to more straightforward solutions. One of the best-known examples of this is the London 

Underground example, provided by Humphreys (2015). The London Underground map provides just 

enough information for the traveller to navigate the underground network without the unnecessary burden 

of information such as distance and exact geographic position. It is a representation that contains precisely 

the information necessary to plan a route from one station to another – and no more. Similar examples 

may be provided for other subjects, allowing the concept to be better understood (Wing, 2008): 

○ Verbal and story-based problems in mathematics such as filling rates of pools, areas to be fenced 

off and accounting calculations are essentially an exercise in abstraction for the students where 

they are required to separate relevant and irrelevant data and state their solutions in the symbolic 

language of algebra, geometry, or arithmetic.  

○ In geography, students make use of specialized maps (physical, topographic, political, touristic 

etc.), ignoring many aspects of real-world geography in favour of ease-of-access for data 

relevant to their current study. 

○ History lessons are essentially abstractions of local histories and individual biographies taught 

as national or world history – abstract projections of real-world events.  

● Problem Decomposition is a method for taking apart problems and breaking them into smaller and more 

understandable constituents. This method is also known as “Divide and Conquer”. 

● Algorithmic Thinking is the process of constructing a scheme of ordered steps which may be followed to 

provide solutions to all constituent problems necessary to solve the original problem. 
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● Automation is the configuration of formed algorithms over computers and technological resources to be 

efficiently applicable to other problems. 

● Generalization is the process of adapting formulated solutions or algorithms into different problem states, 

even if the variables involved are different. 

 

There are also a number of techniques used to exemplify and evaluate computational thinking. These comprise the 

equivalent of a scientific method for computer science. They are employed to put computational thinking to 

practice in the classroom, at home and at work (Humphreys, 2015): 

● Reflection 

○ Reflection is the skill of making judgements (evaluation) that are fair and honest in complex 

situations that are not value-free. Within computer science this evaluation is based on criteria 

used to specify the product, heuristics (or rules of thumb) and user needs to guide the judgements. 

A child’s realization, when playing with pebbles, that 3 + 4 is the same as 4 + 3 is an example 

of reflection (or rather, reflective abstraction). The information created in this example is derived 

not from the pebbles themselves but from the actions taken on them.  

● Coding 

○ An essential element of the development of any computer system is translating the design into 

code form and evaluating it to ensure that it functions correctly under all anticipated conditions. 

Debugging is the systematic application of analysis and evaluation using skills such as testing, 

tracing, and logical thinking to predict and verify outcomes.  

● Designing 

○ Designing involves working out the structure, appearance and functionality of artefacts. It 

involves creating representations of the design, including human readable representations such 

as flowcharts, storyboards, pseudo-code, systems diagrams, etc. It involves further activities of 

decomposition, abstraction and algorithm design. 

 

Figure 2. 4 basic strategies for computational thinking (McNicholl, 2018: p.37). 

Decomposition Abstraction 

Pattern Recognition Algorithms 
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● Analysing 

○ Analysing involves breaking down into component parts (decomposition), reducing the 

unnecessary complexity (abstraction), identifying the processes (algorithms) and seeking 

commonalities or patterns (generalisation). It involves using logical thinking both to better 

understand things and to evaluate them as fit for purpose. 

● Applying 

○ Applying is the adoption of pre-existing solutions to meet the requirements of another context. 

It is in generalization - the identification of patterns, similarities and connections - and exploiting 

those features of the structure or function of artefacts. An example includes the development of 

a subprogram or algorithm in one context that can be re-used in a different context. 

 

5. Critique and Contemporary Research in Computational Thinking 

Wing (2006), in the article “Computational Thinking”, provided a definition of computational thinking, and held 

that computational thinking is a fundamental ability for the future which will become a necessity for all individuals 

and should be employed in the curriculums for students of all levels. However, the article itself in Wing (2006) 

totaled only 4 pages, was not based on independent research and lacked in-depth analysis of many topics covered 

in the article. While the article has been used as a foundation for research done by many academics, it has also 

been put under a heavy amount of critique. Hemmendinger (2010) especially claimed that the components of 

computational thinking as presented in Wing (2006) are not unique to computational thinking. According to 

Hemmendiger (2010): 

● Reformulating hard problems is typical of all domains of problem solving, 

● Philosophers have been thinking about thinking — recursively — for a long time, 

● Mathematics surely uses abstraction, and so do all disciplines that build models, 

● Separation of concerns and using heuristics also characterizes problem-solving in general., 

Furthermore, Hemmendinger (2010) advances that teaching individuals involved in other disciplines how to think 

like a computer scientist is unreasonable. Rather than employing a single discipline to dictate the thought processes 

for all disciplines, physicists should think like physicists and economists should think like economists while 

making use of computational thinking and computational processing technologies in order to solve questions in 

their field efficiently and determine new questions which would result in novel, efficient methods once solved. 

Another objection to Wing comes from Denning (2016).  According to Denning (2016), the article ascribes an 

undeservedly significant weight to algorithms and algorithmic thinking. Rather than valuing algorithms above 

their contribution, Denning (2016) suggests that an algorithmically-controlled computational thinking model 

should not be ignored as an alternative. Additionally, they advance the notion that computational thinking is not a 

fundamental skill and cannot be regarded as an equal to fundamental abilities such as reading and writing. In short, 

the idea that every individual can use computational thinking and campaigns with claims such as “Coding for 

Everyone”, “A Nation of Coders” and “A Coder at Every Home” are unrealistic. The question of whether every 

profession and every individual really needs to employ computational thinking and consequential coding abilities 

as a part of computational thinking, is an unresolved discussion in the field. One of the most striking comments 

on this conundrum is provided by Barr & Stephenson (2011: p.113): 

 

The ultimate goal should not be to teach everyone to think like a computer scientist, but rather 

to teach them to apply these common elements to solve problems and discover new questions 

that can be explored within and across all disciplines (Barr and Stephenson, 2011: p.113). 
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Learning computational thinking and computer science are not one and the same. Yet colloquially, these two 

expressions are used interchangeably. This supposed equivalency is erroneous as the latter is essentially meant to 

educate learners in the study and use of the principles of mathematical calculation. One reason why this belief is 

in wide circulation could possibly be Wing (2006)’s original claim that “computational thinking is thinking like a 

computer scientist.”. Denning (2009) and Hemmendinger (2010) oppose this claim mainly because of their thesis 

that such a definition of computational thinking could give the impression that computational thinking is only 

relevant to the field of computer science and is largely inapplicable to everyday situations in would-be 

computational thinking learners. 

Programming education is a sub-field of computer science and while primarily conducted to educate learners in 

the best practices of computer programming, one of its goals is being conducive to the creation of high-quality 

computer programs. Computational thinking, while it has considerable overlap with computer science on certain 

elements, focuses mainly on developing and disseminating approaches to problem solving, unlike computer 

science.  

While the terms “coding” and “programming” are used interchangeably with each other, “coding” has been 

employed as a more exciting and less scary alternative, especially to entice and motivate beginners in scripting. 

Platforms such as Code Studio, Hour of Code, Code Monkey and MIT’s Scratch and App Inventor 2 tend to use 

coding rather than programming. More advanced text-based and OOP languages (Python, Java etc.) edge towards 

the use of programming instead. One widely-held belief is that computational thinking, and as a result coding and 

programming education, has a positive effect on students’ problem-solving abilities. Multiple different 

manifestations of this belief may be observed in contemporary research, and it can be connected to more solid 

scientific reasoning via analyzing the results of contemporary research:  

 

● Palumbo (1990)’s meta-analysis study concluded that strong evidence to the existence of a meaningful 

correlation between programming education and problem-solving abilities could not be found. Palumbo 

(1990) came to this conclusion by evaluating different studies conducted on high school students by a 

variety of researchers. These included studies based on CAI (Computer Aided Instruction), LOGO and 

BASIC languages being taught to different groups of students in various class hours and total course 

length in weeks configurations – none of which discovered a scientifically significant correlation. As 

previously stated in this article, one of the reasons for the near-extinction of these programming languages 

may be their inability to provide the expected contribution to the students’ problem-solving abilities.  

● Kalelioğlu & Gülbahar (2014) held a 5-week long study with 5th Grade Middle School students (22 girls 

and 27 boys) in the 2013-2014 educational year. Students conducted varying activities in the Scratch 

programming language as part of the study. Their results indicated that when quantitative data is analyzed, 

there was no statistically significant divergence between the pre-study and post-study problem-solving 

ability quotients. Analysis of qualitative data, on the other hand, showed increased student enthusiasm 

towards programming. 

● Kukul & Gökçearslan (2014) worked with 304 5th and 6th grade students who had not taken any 

programming lessons previously. Similarly, to Kalelioğlu & Gülbahar (2014), they also used Scratch. 

Their conclusions indicated that no statistically significant change in the students’ problem-solving 

abilities was observed. 

● Morelli et al. (2011) analyzed the results under specific indicators. The “App Inventor” mobile 

programming application was taught to high school students as part of a summer programme. Neither the 
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“problem-driven learning” nor “support for learning” indicators mention an increase in the problem-

solving abilities of students, instead opting to focus on the increase in motivation observed. 

● Wong et al. (2015) conducted an experimental study on 264 5th Grade students in Hong Kong between 

the years of 2012 and 2014. The first year of the study was used to teach KODU (A game engine 

developed by Microsoft) to the students, while in the second year Scratch and Small Basic were used in 

the curriculum. The students’ mathematics grade average rose from 74.86 in 2012-2013 to 77.59 in 2013-

2014. The students’ creativity, critical thinking and problem-solving abilities were also evaluated. Based 

on t-Test results conducted on data retrieved from the ESDA student evaluation portal, the students’ 

problem-solving abilities appeared to rise from 2.75 to 2.95. However, while the researchers did indicate 

that participation in coding developed certain abilities in the students, other fundamental abilities were 

not conclusively affected.  

  

Various strong claims have been made regarding the positive influence of programming/coding education in the 

cognitive development of children. Papert (1980), believed that programming allowed children to shape their own 

learning environments. Papert’s most important claim was that learning LOGO improved problem-solving abilities 

by providing concrete experiences which were conductive to conceptualizing pictures on an operational scale (As 

Papert himself was a mathematician, his examples were frequently based on mathematics and geometry. Concrete 

experiences were defined as the appearance of geometric shapes on the screen.). Formal operational thinking was 

defined by Piaget as the ability to construct relationships, make inferences and build hypotheses (Kıncal & Yazgan, 

2010: p.724). An individual capable of formal operational thinking can make abstractions, understand 

mathematical constructs requiring high-level thinking, generalize by applying the acquisitions from these problems 

to other problems, is able to make plans, and employs a procedural method of thinking. At this point, the similarities 

between formal operational thinking as defined by Piaget and CT-based abilities become apparent. This is why 

Papert claimed that LOGO could aid in dismissing negative attitudes towards math in students, teaching 

mathematical concepts, and strengthening self-control and success-oriented attitudes in children (Liao & Bright, 

1991: p.252). 

Results from these studies show conflicting opinions in computational thinking literature when it comes to the 

question of whether programming education on its own has a meaningful effect in the problem-solving abilities of 

students. But studies where components of computational thinking are employed show an increase in the students’ 

problem-solving, abstract-thinking, troubleshooting and cooperative learning abilities. 

 

● Roman-Gonzales et al. (2017) studied 1251 Spanish students in 5th – 10th grades. CTt (Computational 

Thinking Test) and PMAt (Primary Mental Abilities Test) were applied to the students. The correlation 

between CT abilities and “spatial memory”, “Reasoning” and “Problem-solving” was calculated 

experimentally, with spatial memory being k (r=0.44), reasoning (r=0.44) and problem-solving (r=0.67). 

Problem-solving appears to be more heavily-influenced than other abilities.  

● Grover, Pea & Cooper (2015) worked with 54 students in Northern California who were between 11 and 

14 years old. A 7-week course was designed for the students where they used the Scratch coding platform 

and were able to translate their code into text-based platforms based on their acquisitions from the 

platform. The researchers were able to correlate CT abilities with problem-solving abilities. When the 

results are analyzed, the students are shown to have advanced themselves especially in algorithmic 

thinking abilities. Another interesting point is that the students’ previous CT experiences and 

mathematical abilities (as determined by an introductory exam conducted by the researches) were strong 
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indicators of learning outcomes. Pea & Kurland (1984, p.35) enumerated “mathematical ability”, 

“memory capacity”, “analogical reasoning ability”, “situational reasoning ability” and “procedural 

thinking ability” as the mathematical skills necessary for acquisition of programming ability, while also 

specifying that students who are especially able to operate the LOGO language successfully were also 

successful in English and humanities classes, and not merely in mathematics. 

● Webb (2010) assayed the contribution of programming education to students’ troubleshooting abilities. A 

regimen of 2 hours per week for 5 weeks was planned; with CT skills being connected to problem-solving 

ability. While 19 boys and 21 girls were present at the beginning, due to personal reasons and exams, only 

24 students (16 boys, 8 girls) completed the regimen. At the end of the study, the students were asked to 

“Fix the Frogger Program” in 40 minutes. Only 1 student failed this assignment, with the rest proceeding 

to the debugging phase. 

● The study conducted by Bers et al. (2013) was based on 3 pre-school classes (2 public and 1 private) of 

53 students in total, and had a length of 20 hours. During this study, learners were exposed to 6 main 

subjects including engineering design processes, robotics, instruction-based programming, loops, sensors, 

and control mechanisms. TangibleK robots and software were employed in the study. The contents of 

these subjects were tailored to suit the students’ age. Songs, games, and rhythmic and repetitive moves 

were inserted to the applications. For example, “Simon Says” was used in lesson 3: algorithmic 

programming and CHERP (Creative Hybrid Environment for Robotic Programming), a drag-and-drop 

software was taught. The students’ troubleshooting, understanding of the relationship between 

instructions and movement, and use of instruction order and flow-control instructions was studied. The 

results indicated that students’ abilities to cooperate, create ideas, share via negotiation as well as motor 

skills improved. Furthermore, the students were described to have become more active in their creativity 

and problem-solving abilities, both in the mathematical and real world. 

● The study conducted by Durak and Sarıtepeci (2018) was applied to 156 public school students in Ankara. 

Two different data collection tools were used in this study. The first one is the personal information form 

and the second one is the computational thinking ability form. In this study, the factors affecting the 

computational thinking skills of students were examined. These factors are gender, education level, IT 

usage experience, daily internet usage period, mathematics achievement, attitudes towards the 

mathematics course, attitudes towards science courses, achievements in science courses, achievements in 

information technology courses and attitudes towards information technology courses. Among these 

factors, it was determined that the most effective factors on computational skills were education level, 

mathematics achievement, attitude towards the mathematics course and attitude towards science courses. 

 

Upon analysis of these studies, it becomes apparent that it is lessons in coding, mathematics, natural sciences, 

social sciences and language arts, taught according to computational thinking skills and not mere programming or 

coding education, which affect an increase in the problem-solving, abstract thinking, troubleshooting, procedural 

thinking and similar abilities in students. An appropriate and interdisciplinary application of the component of CT 

abilities needs to be advanced in order to raise students not only as coders but as individuals with a radical way of 

thought and perspective. Furthermore, it may be appropriate for Computational thinking and STEAM (Science, 

Technology, Engineering, Arts and Mathematics) to be considered together as these two fields share a great deal 

of subject material (Gülbahar, 2017: p.331). Interdisciplinary work on the part of the students and their ability to 

realize relationships between areas of study, determine the problems they are facing, investigate potential solutions, 

decide upon the correct solution, gather data, analyze data, troubleshoot, develop their models and generalize 
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solutions (ISTE, 2016) will aid their problem-solving abilities. 

 

6. Conclusion 

Computer science-based technologies are developing rapidly in our era, influencing the problem-solving processes 

and social lives of both individuals and societies. From medical work to social media use, results of computer 

science studies are integrated to the daily lives of individuals in a multitude of fields. The effects of computer 

science on modern society is also an indicator of its effects on the scientific method and therefore, naturally, 

scientists. Natural scientists have long positioned computation as a “third” foundation of the scientific method 

alongside theory and experimentation, and that computational thinking is essential to their work (Denning, 2009). 

Though the definitions of and framework for computational thinking as set out by Wing (2006) have long been 

critiqued by other researchers, the importance of computer science has been growing daily, finding applications in 

multiple fields from curing disease to preventing terrorist attacks. Nonetheless, the claim that computer science 

and as a results computational thinking is a fundamental discipline on par with reading, writing and basic arithmetic, 

is still being debated. 

Populist notions such as “Computer Science and Computational Thinking for All”, aimed at bringing the field to 

the mainstream, will make it more difficult for the field to preserve its rightful rigour. As we have deducted from 

the works of Denning, Hemmendinger and Barr amongst others presented in this article, ascribing an undeserved 

importance to certain fields – whether they be deemed coding, computer science, or computational thinking – 

would be inappropriate. Still, researchers may benefit from holding computational thinking as a potential method 

of transforming education, as long as they also hold the criticisms applied to the field in equal regard. As Denning 

(2010, p.28) has also stated, holding computational thinking (and coding) in (undeservedly) excessive esteem may 

lead us back to the same pitfalls we are attempting to avoid. 

As a final remark, we hold that the fundamental goal of computational thinking (and instilling this ability in 

students) and computer education should be aiding students in understanding and – through use of their creative 

impulses – changing the world they live in, for the better (Department for Education, 2014, p.217).  
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