
International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

Teaching Computing in a Multidisciplinary Way in Social Studies

Classes in School – A Case Study

Christiane Gresse von Wangenheim1
Nathalia Cruz Alves1

Pedro Eurico Rodrigues 2

Jean Carlo Hauck 1
1Federal University of Santa Catarina

2University of São Paulo
DOI: 10.21585/ijcses.v1i2.9
Abstract
In order to be well-educated citizens in the 21st century, children need to learn computing in school. However,
implementing computing education in schools faces several practical problems, such as a lack of computing
teachers and time in an already overloaded curriculum. A solution may be a multidisciplinary approach,
integrating computing education within other subjects in the curriculum. The present study proposes an
instructional unit for computing education in social studies classes, with students learning basic computing
concepts, including computational thinking, by programming history related games using Scratch. The
instructional unit is developed following an instructional design approach and is applied and evaluated through a
pilot case study in four classes (5th and 7th grade) with a total of 105 students at a school in Florianópolis/SC/
Brazil. Results provide a first indication that the instructional unit enables the learning of basic computing
concepts (specifically programming) in an efficient, effective and entertaining way increasing also the interest
and motivation of students to learn computing.
Keywords: computer science, social studies teaching, K-12, scratch, programming, computational thinking

1. Introduction
1.1 Why is computing important?
Computing is becoming increasingly ubiquitous in our lives. Knowing fundamental concepts of computing,
beyond the simple use of Information Technology (IT), enables people to be productive regardless of their
professional area (Seehorn et al., 2011). Therefore, there is a growing consensus that it is important to provide
opportunities for children to learn computing starting in elementary school (Naughton, 2012). And, it is no
longer enough to only focus on teaching IT literacy, the capability to use today’s technology (Lin, 2002).
Students have to acquire IT fluency, which adds the capability to independently learn and use new technology as
it evolves, including the active use of computing (Seehorn et al., 2011). Therefore, students need to learn
computational thinking (Wing, 2006) an approach to problem solving in a way that can be implemented on a
computer involving a set of concepts, such as abstraction, recursion, iteration, etc. as well as computing practice
including programming and the use of software tools to solve problems.

1.2 Teaching computing in schools
Currently, the introduction of computing education in schools is a global trend supported by several initiatives
such as Code.org or Computing at School among others. These initiatives support computing education by
providing age appropriate programming environments such as Scratch (MIT, 2016) or Snap! (2016)), curriculum
guidelines, lesson plans and materials (Seehorn et al., 2011) as well as workshops, courses etc. (CodeClubBrasil,
2016). However, most of these initiatives focus on teaching computing as a stand-alone subject (Pazinato and
Teixeira 2013) (Wilson and Moffat, 2010) (Aureliano and Tedesco, 2012). This approach may be problematic in
practice, as it may be difficult to find time for teaching another subject in an already overloaded school
curriculum (MEC, 1998) as to find well-trained teachers for computing education in schools (Google & Gallup,
2015).

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

1.3 Teaching computing in a multidisciplinary way

A solution may be the integration of computing education in a multidisciplinary way within existing subjects in
the curriculum (Qualls and Sherrell, 2010). There exist several proposals of teaching computing in related
subjects such as physics, mathematics, etc. (Andrade, 2013) (Pinto, 2010). However, in order to obtain a broader
acceptance and also to attract girls that may have a preference for different subjects, an alternative may be the
integration in social studies classes, having students study a history topic by learning computing competencies at
the same time (Code.org, 2013) (Ncwit, 2013). Yet, so far there exist only very few work focusing on integrating
the teaching of computing in different knowledge areas. Table 1 presents an overview on related work as
identified through a systematic literature review (Alves, 2016).

Table 1. Summary on related work

Title/Reference Objective School
year

Integration
with

Programming
language

Embedding Scratch in US
History/Geography (Scratched;
Randall, 2009)

Program an interactive animation on a
theme related to social studies.

5th History and
geografy

Scratch

Using App Inventor & History as
a Gateway to Engage African
American Students in Computer
Science (Jimenez and
Gardner-Mccune, 2015)

Use aspects of computational thinking
aligned with historical thinking to
introduce students to computer science
within History classes.

Not
informed

History App Inventor

Animal tlatoque: attracting
middle school students to
computing through
culturally-relevant themes
(Franklin et al., 2011)

Use Scratch to engage students in creating
animations about animals and Mayan
culture, creating an interdisciplinary
experience that combines programming,
culture, biology, art, and storytelling.

7th and
higher

Biology, art
and History

Scratch

Thus, although, there exist already some work in this direction, the results are not readily applicable in our
context in Brazilian schools, as the History theme addressed in the existing instructional units is culturally
relevant only to where the studies were conducted, as well as the fact that the units are not available in Brazilian
Portuguese. In this respect, this article presents an instructional unit (IU) for the development of a digital game
dealing with a history topic as part of social studies classes.
2. Method
The objective of this research is the development, application and evaluation of an instructional unit for
computing education in a multidisciplinary way in schools. To achieve this goal, an exploratory case study was
conducted to understand the phenomena observed during the application of the IU in a particular context and
identify directions for future work (Fig. 1).

Figure 1. Research method.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

The case study is performed according to the procedure proposed by Yin (2013) and Wohlin et. al (2012).

Study definition. The study is defined in terms of objective, research questions and research design. From the
objective, analysis questions and measures are systematically derived using the Goal/Question/Metric (GQM)
approach (Basili et al., 1994). Data collection instruments are defined with respect to the measures.

Study execution. The execution of the study is carried out adopting ADDIE (Branch, 2009) as instructional
design approach. First, the instructional unit is developed. Therefore, the learners and the instructional
environment are characterized. Learning needs are elicited and the learning objectives are defined. In accordance
to the context, the instructional strategy is designed, defining its content, sequence and instructional methods to
be adopted. Instructional material is developed in accordance to the instructional strategy. Then, the instructional
unit is applied in the classroom and evaluated, collecting data as defined by the study definition.
Analysis and interpretation. The collected data is analyzed in relation to the research questions, using
quantitative and qualitative methods. Then, the results are interpreted and discussed.
This research was approved by the Ethics Committee of the Federal University of Santa Catarina (No. 1021541).
3. Multidisciplinary Instructional Unit UNIfICA
3.1 Definition of the IU
In alignment with the ACM/CSTA K-12 curriculum guidelines (Seehorn et al., 2011), the purpose of the
instructional unit UNIfICA1 is to teach basic computing concepts by creating a game with Scratch, related to a
History topic. The main focus is on teaching programming concepts (loops, conditionals, event handling, etc.),
the application of the software engineering cycle and collaborative practices. Students should also understand
what algorithms are and how algorithms and problem solving work. Regarding the Scratch environment,
students should be able to describe what can be done with the environment as well as being able to use the
environment to create, play and share a game. With respect to the History subject (MEC, 1998), the instructional
unit should help to reinforce the understanding of the reality in multiple temporal dimensions focusing
specifically on regional cultural issues in Santa Catarina at 5th grade or global topics in ancient civilizations
(Europe, Greece and Ancient Rome) at 7th grade. Students should also understand the differences between
cultures and ways of living/thinking/doing.

The target audience is school students, aged 8 to 14 years, who already know how to use computers, but do not
have computing competencies. The unit is expected to be taught by a History teacher (with a basic computing
knowledge) together with a teacher providing IT support in schools.
3.2 Instructional strategy
3.2.1 Scratch

The instructional unit uses Scratch (MIT, 2016), a free block-based visual programming language and online
community developed at the MIT Media Lab. It is inspired by programming languages for young people like
LOGO and Squeak Etoys (Resnick, 2007). Despite being based on languages aimed at children and young
people, Scratch was designed to be different from other environments, to be simpler, easier to use and more
intuitive (Guzdial, 2004). It allows to program interactive stories, games, and animations by simply using drag
and drop blocks to perform different commands or actions (Fig. 2) (Malan and Leitner 2007)
(Monroy-Hernández and Resnick, 2008). It is one of the most popular programming languages for young people
with more than 16 million users worldwide. The primary goal of Scratch is to help children (ages 8 and up) to
develop essential 21st century learning competencies (Rusk, Resnick and Maloney, 2006).

Figure 2. Scratch programming environment.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

3.2.2 Design of the instructional unit

During the instructional unit, first basic programming concepts and the Scratch environment are presented. The
instructor teaches the development of an exemplar puzzle game in an active learning approach in which the
concepts are presented step-by-step and the students immediately apply them by creating the game. After the
initial familiarization, students begin creating their own game related to a History topic. These topics are
assumed to have been studied beforehand in the social studies class through expositive lectures, reading and
discussions. In order to give ideas, several examples of Scratch games related to History topics are demonstrated.

The students then develop an idea for a game related to the content of the class, choosing the kind of game and
its mechanics. Then, they iteratively and incrementally design, program and test the game in pairs or small
groups with up to three students. The created games are shared in a studio via the Scratch online community. The
students are encouraged to play and comment on the games. In the end of the instructional unit, the experiences
are discussed in class.

Table 2: Syllabus of the IU

Lesson (2 hours each) Instructional method Resources Evaluation
Measurement 1 - Student pre-unit

questionnaire
1. Introducing Scratch
- Access the Scratch
environment
- Program an example game
illustrating basic commands

- Practical activity
following the
step-by-step
presentation of the
instructor

- Instructor guide
- Scratch environment
- Computers
- Classroom projector

2. Designing a game on a
history topic
- Division of students in
groups.
- Design of their game
(selection of game type &
mechanics and history topic).

- Presentation of
example games by the
instructor
- Practical activity in
small groups/pairs.

- Example games
- Scratch environment
- Instructional
material from history
classes
- Computers
- Classroom projector

3…5. Programming and
testing the game

- Practical activity in
small groups/pairs.
- Individual support
provided by
instructor(s)
answering questions
of the students.

- Example games
- Scratch environment
- Instructional
material from history
classes
- Computers

- Assessment rubric
for evaluating the
student’s programs
- Dr. Scratch for
analyzing complexity
of the programs

6. Finalization of the projects
- Sharing and trying out the
games developed by the class.
- Debriefing on the
instructional unit.

- Practical activity in
small groups/pairs.
- Discussion

- Scratch environment
- Computers

Measurement 2 - Student post-unit
questionnaire
- Teacher post-unit
questionnaire
- Parent, teacher and
student feedback
collection

In accordance to the instructional strategy, the instructional materials have been developed and are available
online in Brazilian Portuguese at https://computacaonaescola.paginas.ufsc.br/unidade-instrucional-
interdisciplinar/ under the Creative Commons license.

1 Instructional unit developed in Portuguese: “Unidade Instrucional Interdisciplinar de Computação e História”.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

3.2.3 Dr. Scratch

To assess the complexity of the games developed by the students, the static code analysis tool Dr. Scratch
(Moreno-León and Robles, 2015) is used. Dr. Scratch is a free open-source web tool to automatically analyze
Scratch projects that assigns a score in terms of computational thinking and programming concepts used. The
analyzed areas include: Logic, Parallelism, User Interaction, Data Representation, Flow Control,
Synchronization, and Abstraction. Table 3 illustrates how the score is defined with respect to each of these areas.

Table 3: Areas analyzed by Dr.Scratch.

Area Score definition

Logic Use of "if then else" commands.

Parallelism Use of 2 or more commands that execute at the same time.

User Interaction Use of commands that do some kind of interaction with the user, e.g.: mouse use, keystroke.

Data Representation Use of commands that modify actor, variable, and lists properties.

Flow Control Use of “for”, “while” commands.

Synchronization Use of commands that wait or send messages to synchronize actions.

Abstraction Use of commands to create functions and use of sprites in an advanced way.

4. Application of the IU
The developed instructional unit was applied in two 5th grade classes (5M and 5V) and two 7th grade classes
(7A and 7B) at the Autonomia school during the first semester 2015 (Table 4). Autonomia is a private school that
offers early childhood education, primary and secondary education.

Table 4: Overview on the application.

Grade Class Number of students Average number of computing instructors present to support
the application of the IU (in addition to the subject teacher)

5th 5M 24 4
5V 21 1

7th 7A 31 3
7B 29 1

Total 105

The classes were taught by the history teacher of the Autonomia school. As the objective of the application was
to pilot the developed instructional unit, the classes were also supported by computing instructors (professors
and undergraduate students) from the Autonomia school. The instructional unit was taught as part of the regular
social studies classes. In total, six lessons were taught biweekly in accordance to the availability of each class/
instructors/etc. The number of computing instructors varied among the classes depending on their availability
(Tab. 4). The subject teacher and the computing instructors provided assistance during the development of the
games by the students. Undergraduate students from the Federal University of Santa Catarina supported the
preparation of instructional materials and the management of backups of the students’ work.

Figure 3. Students during the IU.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

Since the school does not have a specific computer room, classes were conducted in the students’ classrooms
using notebooks. Due to some Internet connection problems, both Scratch versions (online and offline) have
been used during the classes. Some examples of the results developed by the students are presented in Figure 4
and are available online2.

Figure 4. Examples of games developed by the students.
5. Evaluation of the Instructional Unit
5.1 Definition of the evaluation
The goal of this study is to explore and to understand aspects related to the instructional unit for teaching
computing in schools, in a multidisciplinary way, in social studies classes. Based on this goal, the following
analysis questions have been defined:

AQ1. Are the learning objectives (both in terms of computing and in terms of social studies) achieved using the
instructional unit?
AQ2. Does the instructional unit facilitate learning?
AQ3. Does the instructional unit promote a pleasant and enjoyable learning experience?
AQ4. Does the instructional unit provide a positive perception of computing?
5.2 Data Collection
Data has been collected from the students before and after the instructional unit via questionnaires and the
teacher after the unit. Data on the complexity and commands used in the developed games has been analyzed
using the tool Dr.Scratch (Section 3.2.3). In addition, observations from parents, students and teacher have been
collected informally by the instructors.

2 Class 5M: https://scratch.mit.edu/studios/1192816/
Class 5V: https://scratch.mit.edu/studios/1192820/
Class 7A: https://scratch.mit.edu/studios/1192828/
Class 7B: https://scratch.mit.edu/studios/1192830/

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

Table 5. Overview on the quantity of the data collected.

Grade Student Teacher Games Observations from
parents, students and

teacher
pre-unit

questionnaire
post-unit

questionnaire
post-unit

questionnaire
5th 45 45 1 18 Yes
7th 60 54 1 23 Yes

Total 105 99 2 41 Yes

5.3 Data Analysis

Data was analyzed in a qualitative and quantitative way using descriptive statistics with respect to the analysis
questions. As no significant difference between the data collected in the different classes (neither related to grade
nor history topic) was identified, it was analyzed by simple pooling without being weighted, creating one single
sample.

In general, all students created a game, including various game genres as shown in Table 6. Most of the students
actively participated throughout the computing lessons, demonstrating enthusiasm and willingness.
Table 6. Distribution of the games developed per genre.

Game genre A game Amount of games developed
Action that emphasize movements, usually based on reactions. 13
Quiz where the player needs to answer questions to a particular

knowledge area.
12

Adventure where the player follows a story through texts/songs/images, e.g.,
puzzles.

11

Incomplete game
or without genre

that does not have a clear genre or was not finished. 5

5.3.1 Are the learning objectives achieved using the instructional unit?

All students were able to use the Scratch environment for programming a game with ease. The students used the
initially presented commands and found the environment very intuitive to explore further commands, indicating
that they understood and were able to apply programming concepts (Fig. 5).

Figure 5. Frequency distribution of commands/resources used in the developed games

Many games (more than 68%) used basic commands such as conditional logic mostly to manipulate actor’s
appearances, backgrounds and game scores. Other commands widely used include loops, internal events and
logical operators. Furthermore, a large number of games (more than 46%) also used variables mainly for
controlling the game score. Among the most used ones also were interactivity commands in order to allow the
players to interact with the game. In addition, a large number of games used commands for the parallel execution
of scripts due to the games’ mechanics and the intuitive way in which they are supported in the Scratch
environment. This shows that students learned programming concepts varying from simple concepts such as
logical operations to more advanced concepts such as synchronization.

39	
36	

32	
28	

23	
22	

21	
19	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	

Variables	

Logical	operators	

Internal	Events	

Loops	

Condi6onal	logic	

Interac6vity	

Sharing	

Paralleliza6on	

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

A main strength of the Scratch environment is its flexibility, with the possibility to create any kind of game. It
also provides diverse support for the game design. For example, to design characters or backgrounds, the
students either used images from the Scratch image gallery or searched on the Internet (e.g. using Google image
search). They also used the Scratch drawing tool to draw from scratch or to modify images. This allowed the
students to use actors and scenarios in accordance to the respective History topic. The Scratch image gallery and
drawing tool turned to be a great feature especially in moments without Internet connection, enabling the design
of characters and backgrounds offline within the Scratch environment.

Indirectly by programming the games, students also learned how to use basic steps in algorithmic problem
solving which contributed to the learning of computational thinking and to understand that software is a
sequence of instructions being followed by a computer. Starting from an idea for their game they typically
divided it into parts, and then designing, programming and testing each part immediately in the Scratch
environment. Thus, implicitly following a cycle of problem statement, solution design, programming and testing,
enabled them also to have an initial notion of a software engineering process for developing computer programs.
Working together on the game also helped the students to learn to develop software collaboratively. This has
turned out to be a main strength of the IU as they helped each other by executing a kind of pair programming,
with one student programming and the other accompanying, suggesting and reviewing the code being written.
When facing a problem they were not able to resolve on their own, students asked for help of one of the
instructors. It was clear that the possibility to freely choose both the game genre and the game design stimulated
a discussion and contribution of ideas of almost all students within their groups. However, very few students
were distracted by the possibility to access other websites and/or by problems with the notebook and/or instable
Internet connection, not focusing on the game development. On the other hand, students were very eager to show
the results they achieved to others, which motivated those to achieve similar results. We also observed that
students willingly explained how they had done something implementing a kind of peer instruction.

The students themselves also perceived these learning effects. After the instructional unit, most students believed
that they can make computer programs. However, only some of the students thought that they reached higher
competence levels (e.g., being able to explain to a colleague how to make a program) (Fig. 6).

Analysing the games with respect to their History content and based on feedback from the subject teacher after a
debriefing session with the students at the end of the instructional unit, we can observe that the respective
learning objectives have also been achieved by the majority of the students. By developing the games, the
students demonstrated knowledge about the way of life of different groups, in different times and spaces, in their
cultural and social manifestations, recognizing similarities and differences between them and their conflicts. This
understanding can be observed not only through the choice of approapriate and differentiated actors and
backgrounds in the games, but also through the selection of related actions and game flow (in the case of action
games) and/or questions (in quiz games).

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

5.3.2 Does the instructional unit facilitate learning?
Most students found the lessons very easy or easy, although, in general, students consider making computer
programs rather difficult (Fig. 7).

This perception of the students could also be confirmed through the feedback from the teacher (Tab. 7) and
qualitative comments from the students (Tab. 8). In general, students easily learned how to use the Scratch
environment. Many students learned how to use different commands on their own or asked their colleagues or
the instructors for help. Especially the possibility to immediately execute and test programs was observed as
essential to support the learning process, making it easy for students to find errors quickly and to correct them
and, thus, learning by trial and error.
Table 7. Responses from the teacher’s questionnaires.

Question Answers

Very easy Easy Difficult Very difficult

I noticed that the students found the classes 2 answers

I noticed that for students to learn how to use
Scratch was

2 answers

I noticed that for students programming is 2 answers

Students considered the freedom to develop any kind of game in the context of the respective History topic very
positive. Yet, on the other hand we observed that such a degree of flexibility also required a large amount of
support by the instructors as students faced very different issues.

Table 8. Summary of qualitative feedback by the students.

General
evaluation of
the IU

"Great, easy and fun."
"Cool, it was fun to create a game and play other games, although sometimes I had a hard time."
"I loved it! I had no idea how fun computing is and it is not necessarily that difficult."
"I found the lessons very interesting, even having some problems."
"Complicated.
"Very complicated with such a short time to develop the game."

Strengths "That I was able to surpass the objectives."
"That I knew how to do things."
"The challenges."
"That I was able to program something that worked and was cool.”
"The method of learning that was used."

Weaknesses "When I did not know how to do things."
"When I was frustrated that my program did not work.”
"The difficulty of the commands, I did not quite understand how they are used."
"Difficulties of the games."
"Sharing the game, I found this very complicated."
"Very complicated to share the game, it stopped working in the middle of sharing."

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

In addition, problems with the technical infrastructure also increased the complexity of the lessons. For example,
when being without Internet connection, students had to draw actors/scenarios from scratch (and/or by
modifying some from the Scratch image gallery) rather than simply use images found on the Internet. Yet, it was
impressive that even those problems did not hinder the majority of the students to develop their games,
demonstrating a high degree of persistence. An additional problem has been the need of parents to confirm the
creation of an account on the Scratch site before the account can be used.
5.3.3 Does the instructional unit promote a pleasant and enjoyable learning experience?
The majority of the students evaluated the lessons as excellent or good and considered them fun (Fig. 8).

This positive assessment is also confirmed by the responses from the teacher (Tab. 9) and by the majority of
students that indicates that the time in class passed quickly or very quickly (Fig. 9).

Table 9. Responses from the teacher’s questionnaires.

Question Answers

Lots of fun Fun Boring Very boring

I noticed that students found that programming is 2 answers

I noticed that students found that the classes were 2 answers

Strongly agree Agree Disagree Strongly
disagree

I noticed that students like to come to computer
classes

2 answers

Very quickly Quickly Slowly Very slowly

For me classes passed 2 answers

Excellent Good Regular Poor

The instructional strategy of the unit is 2 answers

The teaching material is 2 answers

Figure 9. Students’responses on the time passing during the classes.

0	

10	

20	

30	

40	

50	

N
um

be
r	o

f	s
tu
de

nt
s	

Very	Quickly	

Quickly	

Slowly	

Very	slowly	

No	answer	

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

Still, several students thought that the time passed slowly/very slowly. One of the reasons may be due to the
problems we faced with the IT infrastructure. Several times no Internet connection was available, which
hindered the search for images or made it impossible to save projects on the online Scratch environment in order
to continue working on them in the next class. Another problem observed was that notebooks started to run out
of battery at the end of the school period and students had to switch notebooks in order to continue their work. A
different problem was that in one class the lectures were taught by the subject teacher only without further
assistance (see Tab. 4). In this situation, it took longer to answer the individual questions of the students, which
delayed the continuation of their work.

However, in general, the students assessed the IU positively (Tab. 10). They enjoyed the possibility to create
characters/scenarios and to freely design their games. A majority also indicated that they would like to have
more such computing classes. The students generally welcomed the computing instructors enthusiastically
commenting their delight in having a computing class, expressing also disappointment when the classes ended.
Many students would have liked the classes to last longer or to occur more frequently. Only very few students
did not like the classes.
Table 10. Discursive responses of the students.

What do you
think of these
classes?

"I thought these classes were awesome!"
"I loved them! I had no idea that computing is fun and not necessarily that difficult. "
"I found the lessons great, fun, interesting and learning a lot "
"I think it was a unique and enjoyable experience."
"I found it interesting and cool, but it's was not enough time."
"I found it very cool to do this work with Scratch, as we learned a little bit how it is to work with
computing, and I hope to have more classes like this."
"I found it very cool, fun and spectacular! I liked a lot to have learned this! Scratch is great."
"I thought it was cool, but I think that the instructors could have paid more attention."
"I was a bit bored with these classes and had a headache as well."
"The classes are boring, and I did not like them."

What did you
like most?

"Being able to design the game freely."
"Everything, especially to create the characters."
"The freedom we had to create our own stories."
"That we learned how to make games and to work with computing in a little bit more elaborated way."
"Being able to learn how to work with Scratch, developing a great work."
"I liked to learn how to use Scratch, since I never had used it before."
"The outcome of the games."
"The last class when we played the games ourselves."

What did you
like less?

"That the lessons passed very quickly and that we had only 1 lesson every 15 days."
"That the lessons were not given every week."
"That there were very few classes."
"The large number of classes until the final presentation."
"Instructors did not listen to me when I asked for help."
"Help was delayed in classes."
"To have to redo 8 times the game in Scratch."
"The notebook battery always ran out when it was my turn."
"Having to share one computer."

5.3.4 Does the instructional unit provide a positive perception of computing?
Students demonstrated willingness to learn computing and to continue programming with Scratch (Fig. 10).

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

0	

5	

10	

15	

20	

25	

30	

35	

40	

Lots	of	fun	 Fun	 Boring	 Very	boring	I	don't	know	No	answer	

N
um

be
r	o

f	s
tu
de

nt
s	

Before	the	IU	

ANer	the	IU	

Figure 10. I want to learn more about how to make
computer programs.

The IU also seems to help to transmit the perception that computing is fun (Fig. 11). This was also endorsed by
the observations of the instructors and asnwers of the teachers, who noticed that students were motivated to learn
more about computing. The teachers also confirmed several impacts by learning computing in a fun and
motivating way (Tab. 11).

Table 11. Responses from the teacher’s questionnaires.

Question Answers

Strongly
agree

Agree Disagree Strongly
disagree

I noticed that students want to learn more about computing 2 answers

I noticed that students liked programming 2 answers

I noticed that learning to program also teaches students abstraction and
logic

2 answers

I noticed that learning computing encourages students to think creatively 2 answers

I noticed that learning computing encourages students to explore new
things

2
answers

I noticed that learning computing teaches the student to deal with failures
and successes

2
answers

I noticed that learning computing improves student concentration 2 answers

I noticed that computing classes stimulate the sharing of knowledge
among students

2 answers

Figure 11. Making a computer programs is:

0	

20	

40	

60	

80	

Yes	 No	 No	answer	

N
um

be
r	o

f	s
tu
de

nt
s	

ANer	IU	

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

The ability to solve something that seemed impossible at first was reported by many students as one of the most
motivating features of the IU. They also highlighted positively the collaboration with their colleagues,
exchanging ideas as well as explaining programming commands to each other. Often students also showed each
other what they achieved in their games, which kept many of the students motivated to also complete their game.
Some parents also commented that they observed that the fact that their children learned how to make games
instead of just simply playing games, kept them motivated. The fact that the game is made entirely by them, and
that in the end they can play their own games, gave the children a feeling of empowerment.

5.4 Threats to Validity
Several factors in the research design of our study may have influenced the validity of the results. One threat is
related to the way of measuring the evaluation objectives. To reduce errors, we adopted a systematic
measurement approach (Basili et al., 94) to systematically refine the evaluation objective in analysis questions
and measures, operationalized by data collection instruments. In order to reduce threats due to
misunderstandings, the questionnaires were carefully designed, reviewed and piloted using the target audience’s
language. Answers have also compared to the observations and informal comments collected during the IU.

Another treat may be the sample size. However, a sample size of 105 students can be considered acceptable,
even, although, there have been small changes with respect to the participants during the study (e.g., children
changing schools and/or not being present in all lessons). However, to allow generalizability of the results it will
be necessary to repeat the study in other schools. Still, the results of this study are a first significant feedback on
the application of the instructional unit in the context of an exploratory research.

6. Conclusion

Following the trend for computing education in schools, this article proposes a way on how to integrate
computing education in a multidisciplinary manner in social studies classes in Brazil. An initial evaluation of this
instructional unit with 4 classes (with a total of 105 students) provides a first indication that the unit can be
effective to achieve learning outcomes with respect to computing practice & programming, computational
thinking and collaboration besides reinforcing History topics. Participating students were able to understand and
practice the design, programming and testing of games, thereby also learning concepts related to computational
thinking. The students easily used the Scratch environment. The instructional unit was designed in a way it also
stimulated their collaborative skills through pair programming and by sharing their knowledge and results with
their colleagues. Moreover, although, students consider computing difficult, they enjoyed the classes having fun.
In consequence, the classes resulted in an increased interest of the students in computing and programming
expressing their eagerness for more computing classes in school.

References

Alves, N. C. (2016). Desenvolvimento de uma unidade instrucional interdisciplinar para ensinar computação no
ensino fundamental. Undergraduate thesis (Graduation in Computer Science). Brazil, Federal University of
Santa Catarina.

Andrade, M., Silva, C., & Oliveira, T. (2013). Desenvolvendo games e aprendendo matemática utilizando o
Scratch. Simpósio Brasileiro de Jogos e Entretenimento Digital. São Paulo, 260-263.

Aureliano, V. C. O., & Tedesco, P. C. A. R. (2012). Avaliando o uso do Scratch como abordagem alternativa
para o processo de ensino-aprendizagem de programação. In XX Workshop sobre Educação em
Computação (p. 10).

Basili, V. R., Caldeira, G., Rombach, H. D. (1994). Goal Question Metric Paradigm. In Encyclopedia of
Software Engineering, John Wiley and Sons.

Branch, R. M. (2009). Instructional Design: The ADDIE Approach. Springer.
Code.org. (2016). 4 Ways to Recruit Girls to Try Computer Science. [online] Available at: https://code.org/girls.
CodeClubBrasil. (2016). [website] Retrieved from http://codeclubbrasil.org.br/.

Google & Gallup. (2015). Searching for Computer Science: Access and Barriers in U.S. K-12 Education, [online]
Retrieved from http://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

Guzdial, M. (2004). Programming environments for novices. Computer Science Education Research. Lisse, The
Netherlands: Taylor & Francis, 127-154.

Lin, H. S. (2002). IT Fluency: What Is It, and Why Do We Need It?. Technology Everywhere: A Campus
Agenda for Educating and Managing Workers in the Digital Age. Jossey-Bass, San Francisco, 39-49.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE Bulletin, 39(1),
223-227.

MEC. (1998). Parâmetros Curriculares Nacionais, Terceiro E Quarto Ciclos Do Ensino Fundamental. Brazil.
MIT. (2016). Scratch. [online] Retrieved from http://scratch.mit.edu/.

Monroy-Hernández, A., & Resnick, M. (2008). FEATURE empowering kids to create and share programmable
media. interactions, 15(2), 50-53.

Moreno-León, J., & Robles, G. (2015, November). Dr. Scratch: A web tool to automatically evaluate Scratch
projects. In Proceedings of the Workshop in Primary and Secondary Computing Education (pp. 132-133).
ACM.

Naughton, J. (2012). Why All Our Kids Should Be Taught How to Code. The Guardian. Guardian News and
Media.

Ncwit. (2013). Top 10 Ways of Recruiting High School Women into Your Computing Classes. [online] Retrieved
from

https://www.ncwit.org/resources/top-10-ways-recruiting-high-school-women-your-computing-classes/top-10-wa
ys-recruiting.

Pazinato, A. M., Teixeira, A. C. O. (2013). Uso do Software SCRATCH no Desenvolvimento da Aprendizagem e
na Interação Construtivista dos Alunos. Proceedings of the 10th National Education Congress (EDUCERE),
Curitiba, Brazil.

Pinto, A. S. (2010). Scratch na aprendizagem da Matemática no 1º Ciclo do Ensino Básico: estudo de caso na
resolução de problemas. Master Thesis in Child Studies, 2010, University of Minho, Braga, Portugal.

Q Qualls, J. A., & Sherrell, L. B. (2010). Why computational thinking should be integrated into the
curriculum. Journal of Computing Sciences in Colleges, 25(5), 66-71.

Branch, R. M. (2009). Instructional Design: The ADDIE Approach. Springer.

Resnick, M. (2007). Sowing the Seeds for a more creative society. Learning and Leading with Technology. US
& Canada: International Society for Technology in Education (ISTE), 18-22.

Rusk, N.; Resnick, M. and Maloney, J. (2006). Scratch and 21st Century Skills. MIT Media Lab. US: Lifelong
Kindergarten Group.

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O'Grady-Cunniff, D., ... & Verno, A. (2011). CSTA
K--12 Computer Science Standards: Revised 2011.

Snap! [online] Retrieved from https://snap.berkeley.edu/.
Wilson, A., Moffat, D. C. (2010). Evaluating Scratch to introduce younger schoolchildren to programming.

Proceedings of the Psychology of Programming Interest Group Workshop, Madrid, Spain.
Wing, Jeanette M. (2006). Computational thinking. Communications of the ACM, Vol. 49, No. 3, 33-35.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business Media.

Yin, R. K. (2013). Case study research: Design and methods. Sage publications.

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

