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Abstract 

Computers and smart devices have become ubiquitous staples of our lives. Computers and computer-controlled 

devices are used in all industries from medicine to engineering, and textile production. One field where computers 

have inevitably spread into is education, and one pre-requisite of controlling computers, or increasing the level 

and efficiency of our control over them, is making human-computer interaction as efficient as possible. This 

process of efficient and effective computer use, known as “Computer-like Thinking” or “Computational 

Thinking”, is seen as a field with the potential to support individual and societal development in our rapidly 

progressing world and to provide significant economic benefits. The fundamental concepts and scope of this field 

have been delineated in diverse manners by different researchers. Similarly, researchers have also advanced 

distinct critical viewpoints towards and potential benefits of computational thinking. This study aims to first define 

the concept of computational thinking by referencing source literature, then analyze the aims of certain criticisms 

of the field, and discuss the fundamental elements of computational thinking and contemporary research on these 

elements. 
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1. Introduction

“Computer” as a word references a device that 

“computes”, localized into Turkish as “bilgisayar” by 

Prof. Dr. Aydın Köksal (Keser,2011: p.88). Yet it is 

difficult to claim the same about “computational 

thinking”, which is localized in a number of ways by 

researchers. Özden et al. (2015) use “bilgisayarca 

düşünme”, whereas Yesan, Özçınar and Tanyeri 

(2017) prefer “hesaplamalı düşünme”. Çınar and 

Tüzün (2017), meanwhile, used “bilgi sayımsal 

düşünme” and “bilgi işlemsel düşünme” in their paper. 

This study will primarily use “bilgi işlemsel düşünme” 

(Computational Thinking). The presence of such 

diverse localization attempts is natural. As Piaget has 

(Bringuier, 1980: p.57) specified, definition of terms 

comes after the creation of terms in scientific research. 

The novelty of this field, leading to a lack of uniformity 

in jargon and everyday divergence of terms in common 

usage, may be the explanation of this phenomenon. A 

similar differentiation is observed in the computer 

science / informatics divide separating researchers in 

the field. Whereas European sources prefer the term 

“informatics”, putting information before the devices 

used to process it; American researchers seem to prefer 

“computer science” as their term for this field 

(Kalelioğlu, Gülbahar and Kukul, 2016). Nonetheless, 

despite differences in terminology, it is observed that 

the fundamental focus of this field is the basic 

principles of computer science and their interaction 

with mankind.

 
2. The History of Computational Thinking 

While computational thinking is widely considered to have begun by Wing’s (2006) article on the subject, it was 

first referenced by Papert (1996), as “procedural thinking”.  Papert, then in MIT’s Department of Mathematics, in 

the course of his research on computer and software usage in solving geometric problems claimed that 

computational thinking could be employed in defining the relationship between a problem and its solution and the 

structuring of data. Papert and his colleagues had developed the LOGO programming language in the 1960’s. The 

main aim of this language was aiding students in thinking mathematically and logically. LOGO was at its core a 

constructivist language, accepting learning to be a fundamentally individual activity and explaining it in Piagetian 

terms. Papert (1991: p.1)’s individualization of this concept resulted in the notion of learning-by-making. Papert’s 
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adoption of this philosophy is not surprising, considering his experience working alongside Piaget in the Centre 

of Genetic Epistemology in Geneva between 1958 and 1963. LOGO was thus designed as an environment 

conducive to and supportive of Piagetian learning (Logo, 2015). 

 

 
Figure 1. Seymour Papert and LOGO-based robot Turtle. 

 
LOGO and the constructivist ethos behind it were considered to have the potential to transform education when 

the language was first introduced. This potential did not come to life however, as constructivism gradually lost 

traction in the education systems of the UK and the USA (Agalianos, Noss, and Whitty, 2001: p.497). This loss 

was not unprecedented, as other programming languages such as PLATO (Programmed Logic for Automatic 

Operations), CAI (Computer Assisted Instruction), CBT (Computer Based Training) and CAL (Computer 

Assisted Learning) also faced the same fate (Etherington, 2017). 

 
3. Defining Computational Thinking 

As computational thinking is a newborn field, its definition varies from researcher to researcher. Due to this 

variation between academics, this paper will consider practical definitions offered by organizations such as ISTE 

(International Society for Technology in Education) and CSTA (Computer Science Teacher Association) in 

addition to those determined by the academics themselves. Wing (2006, p.33) defines computational thinking as 

“Computational thinking involves solving problems, designing systems, and understanding human behavior, by 

drawing on the concepts fundamental to computer science.”. However, after further revisions [as the original 

article was 4 pages long and many topics were not fully explored.] a different definition was accepted in 2011. 

According to Wing (2011), computational thinking is defined as “Computational thinking is the thought processes 

involved in formulating problems and their solutions so that the solutions are represented in a form that can be 

effectively carried out by an information-processing agent.”. Table 1 showcases the various definitions of 

computational thinking employed by the contemporary academia.  

 
Table 1. Contrasting Definitions of Computational Thinking. 

Definition Source 

...the thought processes involved in formulating problems and their solutions 

so that the solutions are represented in a form that can be effectively carried 

out by an information-processing agent.  

(Cuny, Snyder, Wing, 2010 

akt. Wing, 2011, p.20) 

Computational thinking is the thought processes used to formulate a problem 

and express its solution or solutions in terms a computer can apply 

effectively. 

Wing (2014) 

The mental process for abstraction of problems and the creation of 

automatable solutions. 

Yadav et al. (2014) 

Computational thinking is the process of recognising aspects of computation 

in the world that surrounds us, and applying tools and techniques from 

Computer Science to understand and reason about both natural and artificial 

systems and processes. 

Furber (2012) 
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Computational thinking has a long history within computer science. Known 

in the 1950s and 1960s as “algorithmic thinking,” it means a mental 

orientation to formulating problems as conversions of some input to an output 

and looking for algorithms to perform the conversions. Today the term has 

been expanded to include thinking with many levels of abstractions, use of 

mathematics to develop algorithms, and examining how well a solution scales 

across different sizes of problems. 

Denning (2009) 

...[Computational Thinking] is to teach them how to think like an economist, 

a physicist, an artist, and to understand how to use computation to solve their 

problems, to create, and to discover new questions that can fruitfully be 

explored. 

Hemmendinger (2010) 

 
These definitions tend to focus on the cognitive performances and processes of individuals. Accordingly, we may 

conclude that activities based on computational thinking are essentially meant to improve cognitive skills and 

support the processes of teaching and learning in the affected individuals. 

Researchers in the field have also held workshops with the aim of establishing the true nature of and a working 

definition for computational thinking. Some of these workshops have concluded that a rigorous and consistent 

definition would benefit the field (BİD Workshop Committee, 2011). On the other hand, certain researchers held 

that attempting to define computational thinking in clear-cut terms is unnecessary and that effort should be applied 

in establishing the internal relationships within the computational thinking corpus (Voogt et al., 2015: p.726): 

 

“There is no clear-cut definition for CT and the main tension in the attempt to define 

CT has to do with defining the core competencies of CT versus the more peripheral 

competencies. We argue that for the purpose of conceptualizing CT and integrating it in 

education, we should not try to give an ultimate definition of CT, but rather try to find 

similarities and relationships in the discussions about CT (Voget et al., 2015: p.726).” 

 

Whilst a general concept of computational thinking can be established based on these definitions, they offer little 

insight into how computational thinking should be applied in practice in the field of education. Practical definitions 

of computational thinking and its constituents are needed before achievement targets and educational programmes 

can be created in the classroom. CSTA and ISTE have provided activity rubrics for computational thinking in the 

years 2011, 2015 and 2016. Table 2 is a list of these activities, sorted according to keywords.  
 

Table 2. Practical computational thinking activities, curated by ISTE. 

Keywords Source 

Formulating, organizing, analyzing, modelling, 

abstractions, algorithmic thinking, automating, 

efficiency, generalizing, transferring 

ISTE (2011) 

Creativity, algorithmic thinking, critical thinking, 

problem solving, cooperation 

ISTE (2015; Oden et al. 2015) 

Data analysis, abstract thinking, algorithmic thinking, 

modelling, representing data, breaking problems into 
components, automation 

ISTE (2016) (Computational Thinker Definition) 

  
As these definitions show, the activity lists provide a framework for educators, delineating the educational 

achievements which they should aim for and outlining methods for assessment and evaluation of these 

achievements. For example, an educator using these rubrics would know that teaching visual programming tools 

such as Scratch or KODU in class, is not only meant to help students have fun while designing computer games; 

They would also use the experience as a medium for instilling some of the concepts and abilities outlined in Table 

2.  
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4. Components of Computational Thinking 

The fundamental components of computational thinking are also a source of divergence between researchers. In 

order to establish a baseline for further analysis, components used by various researchers have been provided in 

Table 3.  

 

Table 3. Components of Computational Thinking 

Components Source 

Abstraction, Algorithms, Automation, Problem 

Decomposition, Parallelization, Simulation 

Barr & Stephenson (2011) 

Abstraction, Automation, Analysis Lee et al. (2011) 

Abstraction, Algorithmic Thinking, Decomposition, 

Evaluation, Generalization 

Selby & Woollard (2013) 

Abstraction, Algorithms, Decomposition, Debugging, 

Generalization 

Angeli et al. (2016) 

Abstraction, Algorithms, Automation, Problem 

Decomposition, Generalization 

Wing (2006, 2008, 2011) 

 
While the exact components may differ, we believe the essential concepts they represent are largely uniform 

across the field. Computational thinking abilities are essentially the set of skills needed to convert complex, messy, 

partially defined, real-world problems into a form that a mindless computer can tackle without further assistance 

from a human (BCS, 2014, p.3). As such, this paper will use the definitions of abstraction, problem decomposition, 

algorithmic thinking, automation and generalization from amongst the components provided. These definitions 

can be listed as (Humphreys, 2015): 

● Abstraction makes problems or systems easier to think about. Abstraction is the process of making an 

artefact more understandable through reducing the unnecessary detail and number of variables; therefore 

leading to more straightforward solutions. One of the best-known examples of this is the London 

Underground example, provided by Humphreys (2015). The London Underground map provides just 

enough information for the traveller to navigate the underground network without the unnecessary burden 

of information such as distance and exact geographic position. It is a representation that contains 

precisely the information necessary to plan a route from one station to another – and no more. Similar 

examples may be provided for other subjects, allowing the concept to be better understood (Wing, 2008): 

○ Verbal and story-based problems in mathematics such as filling rates of pools, areas to be fenced 

off and accounting calculations are essentially an exercise in abstraction for the students where 

they are required to separate relevant and irrelevant data and state their solutions in the symbolic 

language of algebra, geometry, or arithmetic.  

○ In geography, students make use of specialized maps (physical, topographic, political, touristic 

etc.), ignoring many aspects of real-world geography in favour of ease-of-access for data 

relevant to their current study. 

○ History lessons are essentially abstractions of local histories and individual biographies taught 

as national or world history – abstract projections of real-world events.  

● Problem Decomposition is a method for taking apart problems and breaking them into smaller and more 

understandable constituents. This method is also known as “Divide and Conquer”. 

● Algorithmic Thinking is the process of constructing a scheme of ordered steps which may be followed to 

provide solutions to all constituent problems necessary to solve the original problem. 

● Automation is the configuration of formed algorithms over computers and technological resources to be 

efficiently applicable to other problems. 
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● Generalization is the process of adapting formulated solutions or algorithms into different problem states, 

even if the variables involved are different. 

 
There are also a number of techniques used to exemplify and evaluate computational thinking. These comprise 

the equivalent of a scientific method for computer science. They are employed to put computational thinking to 

practice in the classroom, at home and at work (Humphreys, 2015): 

● Reflection 

○ Reflection is the skill of making judgements (evaluation) that are fair and honest in complex 

situations that are not value-free. Within computer science this evaluation is based on criteria 

used to specify the product, heuristics (or rules of thumb) and user needs to guide the 

judgements. A child’s realization, when playing with pebbles, that 3 + 4 is the same as 4 + 3 is 

an example of reflection (or rather, reflective abstraction). The information created in this 

example is derived not from the pebbles themselves but from the actions taken on them.  

● Coding 

○ An essential element of the development of any computer system is translating the design into 

code form and evaluating it to ensure that it functions correctly under all anticipated conditions. 

Debugging is the systematic application of analysis and evaluation using skills such as testing, 

tracing, and logical thinking to predict and verify outcomes.  

● Designing 

○ Designing involves working out the structure, appearance and functionality of artefacts. It 

involves creating representations of the design, including human readable representations such 

as flowcharts, storyboards, pseudo-code, systems diagrams, etc. It involves further activities of 

decomposition, abstraction and algorithm design. 

● Analysing 

○ Analysing involves breaking down into component parts (decomposition), reducing the 

unnecessary complexity (abstraction), identifying the processes (algorithms) and seeking 

commonalities or patterns (generalisation). It involves using logical thinking both to better 

understand things and to evaluate them as fit for purpose. 

 

● Applying 

○ Applying is the adoption of pre-existing solutions to meet the requirements of another context. 

It is in generalization - the identification of patterns, similarities and connections - and 

exploiting those features of the structure or function of artefacts. An example includes the 

development of a subprogram or algorithm in one context that can be re-used in a different 

context. 
 
 

Figure 2. 4 basic strategies for computational thinking (McNicholl, 2018: p.37). 

Decomposition Abstraction 

Pattern Recognition Algorithms 
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5. Critique and Contemporary Research in Computational Thinking 

Wing (2006), in the article “Computational Thinking”, provided a definition of computational thinking, and held 

that computational thinking is a fundamental ability for the future which will become a necessity for all individuals 

and should be employed in the curriculums for students of all levels. However, the article itself in Wing (2006) 

totaled only 4 pages, was not based on independent research and lacked in-depth analysis of many topics covered 

in the article. While the article has been used as a foundation for research done by many academics, it has also 

been put under a heavy amount of critique. Hemmendinger (2010) especially claimed that the components of 

computational thinking as presented in Wing (2006) are not unique to computational thinking. According to 

Hemmendiger (2010): 

● Reformulating hard problems is typical of all domains of problem solving, 

● Philosophers have been thinking about thinking — recursively — for a long time, 

● Mathematics surely uses abstraction, and so do all disciplines that build models, 

● Separation of concerns and using heuristics also characterizes problem-solving in general., 

Furthermore, Hemmendinger (2010) advances that teaching individuals involved in other disciplines how to think 

like a computer scientist is unreasonable. Rather than employing a single discipline to dictate the thought processes 

for all disciplines, physicists should think like physicists and economists should think like economists while 

making use of computational thinking and computational processing technologies in order to solve questions in 

their field efficiently and determine new questions which would result in novel, efficient methods once solved. 

Another objection to Wing comes from Denning (2016).  According to Denning (2016), the article ascribes an 

undeservedly significant weight to algorithms and algorithmic thinking. Rather than valuing algorithms above 

their contribution, Denning (2016) suggests that an algorithmically-controlled computational thinking model 

should not be ignored as an alternative. Additionally, they advance the notion that computational thinking is not 

a fundamental skill and cannot be regarded as an equal to fundamental abilities such as reading and writing. In 

short, the idea that every individual can use computational thinking and campaigns with claims such as “Coding 

for Everyone”, “A Nation of Coders” and “A Coder at Every Home” are unrealistic. The question of whether 

every profession and every individual really needs to employ computational thinking and consequential coding 

abilities as a part of computational thinking, is an unresolved discussion in the field. One of the most striking 

comments on this conundrum is provided by Barr & Stephenson (2011: p.113): 
 

The ultimate goal should not be to teach everyone to think like a computer scientist, but rather 

to teach them to apply these common elements to solve problems and discover new questions 

that can be explored within and across all disciplines (Barr and Stephenson, 2011: p.113). 

 

Learning computational thinking and computer science are not one and the same. Yet colloquially, these two 

expressions are used interchangeably. This supposed equivalency is erroneous as the latter is essentially meant to 

educate learners in the study and use of the principles of mathematical calculation. One reason why this belief is 

in wide circulation could possibly be Wing (2006)’s original claim that “computational thinking is thinking like 

a computer scientist.”. Denning (2009) and Hemmendinger (2010) oppose this claim mainly because of their 

thesis that such a definition of computational thinking could give the impression that computational thinking is 

only relevant to the field of computer science and is largely inapplicable to everyday situations in would-be 

computational thinking learners. 

Programming education is a sub-field of computer science and while primarily conducted to educate learners in 

the best practices of computer programming, one of its goals is being conducive to the creation of high-quality 

computer programs. Computational thinking, while it has considerable overlap with computer science on certain 

elements, focuses mainly on developing and disseminating approaches to problem solving, unlike computer 

science.  

While the terms “coding” and “programming” are used interchangeably with each other, “coding” has been 

employed as a more exciting and less scary alternative, especially to entice and motivate beginners in scripting. 

Platforms such as Code Studio, Hour of Code, Code Monkey and MIT’s Scratch and App Inventor 2 tend to use 

coding rather than programming. More advanced text-based and OOP languages (Python, Java etc.) edge towards 

the use of programming instead. One widely-held belief is that computational thinking, and as a result coding and 

programming education, has a positive effect on students’ problem-solving abilities. Multiple different 

manifestations of this belief may be observed in contemporary research, and it can be connected to more solid 

scientific reasoning via analyzing the results of contemporary research:  

 

● Palumbo (1990)’s meta-analysis study concluded that strong evidence to the existence of a meaningful 

correlation between programming education and problem-solving abilities could not be found. Palumbo 

(1990) came to this conclusion by evaluating different studies conducted on high school students by a 
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variety of researchers. These included studies based on CAI (Computer Aided Instruction), LOGO and 
BASIC languages being taught to different groups of students in various class hours and total course 

length in weeks configurations – none of which discovered a scientifically significant correlation. As 

previously stated in this article, one of the reasons for the near-extinction of these programming 

languages may be their inability to provide the expected contribution to the students’ problem-solving 

abilities.  

● Kalelioğlu & Gülbahar (2014) held a 5-week long study with 5th Grade Middle School students (22 girls 

and 27 boys) in the 2013-2014 educational year. Students conducted varying activities in the Scratch 

programming language as part of the study. Their results indicated that when quantitative data is 

analyzed, there was no statistically significant divergence between the pre-study and post-study problem-

solving ability quotients. Analysis of qualitative data, on the other hand, showed increased student 

enthusiasm towards programming. 

● Kukul & Gökçearslan (2014) worked with 304 5th and 6th grade students who had not taken any 

programming lessons previously. Similarly, to Kalelioğlu & Gülbahar (2014), they also used Scratch. 

Their conclusions indicated that no statistically significant change in the students’ problem-solving 

abilities was observed. 

● Morelli et al. (2011) analyzed the results under specific indicators. The “App Inventor” mobile 

programming application was taught to high school students as part of a summer programme. Neither 

the “problem-driven learning” nor “support for learning” indicators mention an increase in the problem-

solving abilities of students, instead opting to focus on the increase in motivation observed. 

● Wong et al. (2015) conducted an experimental study on 264 5th Grade students in Hong Kong between 

the years of 2012 and 2014. The first year of the study was used to teach KODU (A game engine 

developed by Microsoft) to the students, while in the second year Scratch and Small Basic were used in 

the curriculum. The students’ mathematics grade average rose from 74.86 in 2012-2013 to 77.59 in 2013-

2014. The students’ creativity, critical thinking and problem-solving abilities were also evaluated. Based 

on t-Test results conducted on data retrieved from the ESDA student evaluation portal, the students’ 

problem-solving abilities appeared to rise from 2.75 to 2.95. However, while the researchers did indicate 

that participation in coding developed certain abilities in the students, other fundamental abilities were 

not conclusively affected.  

  

Various strong claims have been made regarding the positive influence of programming/coding education in the 

cognitive development of children. Papert (1980), believed that programming allowed children to shape their own 

learning environments. Papert’s most important claim was that learning LOGO improved problem-solving 

abilities by providing concrete experiences which were conductive to conceptualizing pictures on an operational 

scale (As Papert himself was a mathematician, his examples were frequently based on mathematics and geometry. 

Concrete experiences were defined as the appearance of geometric shapes on the screen.). Formal operational 

thinking was defined by Piaget as the ability to construct relationships, make inferences and build hypotheses 

(Kıncal & Yazgan, 2010: p.724). An individual capable of formal operational thinking can make abstractions, 

understand mathematical constructs requiring high-level thinking, generalize by applying the acquisitions from 

these problems to other problems, is able to make plans, and employs a procedural method of thinking. At this 

point, the similarities between formal operational thinking as defined by Piaget and CT-based abilities become 

apparent. This is why Papert claimed that LOGO could aid in dismissing negative attitudes towards math in 

students, teaching mathematical concepts, and strengthening self-control and success-oriented attitudes in children 

(Liao & Bright, 1991: p.252). 

Results from these studies show conflicting opinions in computational thinking literature when it comes to the 

question of whether programming education on its own has a meaningful effect in the problem-solving abilities 

of students. But studies where components of computational thinking are employed show an increase in the 

students’ problem-solving, abstract-thinking, troubleshooting and cooperative learning abilities. 

 

● Roman-Gonzales et al. (2017) studied 1251 Spanish students in 5th – 10th grades. CTt (Computational 

Thinking Test) and PMAt (Primary Mental Abilities Test) were applied to the students. The correlation 

between CT abilities and “spatial memory”, “Reasoning” and “Problem-solving” was calculated 

experimentally, with spatial memory being k (r=0.44), reasoning (r=0.44) and problem-solving (r=0.67). 

Problem-solving appears to be more heavily-influenced than other abilities.  

● Grover, Pea & Cooper (2015) worked with 54 students in Northern California who were between 11 and 

14 years old. A 7-week course was designed for the students where they used the Scratch coding platform 

and were able to translate their code into text-based platforms based on their acquisitions from the 

platform. The researchers were able to correlate CT abilities with problem-solving abilities. When the 

results are analyzed, the students are shown to have advanced themselves especially in algorithmic 

thinking abilities. Another interesting point is that the students’ previous CT experiences and 
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mathematical abilities (as determined by an introductory exam conducted by the researches) were strong 

indicators of learning outcomes. Pea & Kurland (1984, p.35) enumerated “mathematical ability”, 

“memory capacity”, “analogical reasoning ability”, “situational reasoning ability” and “procedural 

thinking ability” as the mathematical skills necessary for acquisition of programming ability, while also 

specifying that students who are especially able to operate the LOGO language successfully were also 

successful in English and humanities classes, and not merely in mathematics. 

● Webb (2010) assayed the contribution of programming education to students’ troubleshooting abilities. 

A regimen of 2 hours per week for 5 weeks was planned; with CT skills being connected to problem-

solving ability. While 19 boys and 21 girls were present at the beginning, due to personal reasons and 

exams, only 24 students (16 boys, 8 girls) completed the regimen. At the end of the study, the students 

were asked to “Fix the Frogger Program” in 40 minutes. Only 1 student failed this assignment, with the 

rest proceeding to the debugging phase. 

● The study conducted by Bers et al. (2013) was based on 3 pre-school classes (2 public and 1 private) of 

53 students in total, and had a length of 20 hours. During this study, learners were exposed to 6 main 

subjects including engineering design processes, robotics, instruction-based programming, loops, 

sensors, and control mechanisms. TangibleK robots and software were employed in the study. The 

contents of these subjects were tailored to suit the students’ age. Songs, games, and rhythmic and 

repetitive moves were inserted to the applications. For example, “Simon Says” was used in lesson 3: 

algorithmic programming and CHERP (Creative Hybrid Environment for Robotic Programming), a drag-

and-drop software was taught. The students’ troubleshooting, understanding of the relationship between 

instructions and movement, and use of instruction order and flow-control instructions was studied. The 

results indicated that students’ abilities to cooperate, create ideas, share via negotiation as well as motor 

skills improved. Furthermore, the students were described to have become more active in their creativity 

and problem-solving abilities, both in the mathematical and real world. 

● The study conducted by Durak and Sarıtepeci (2018) was applied to 156 public school students in 

Ankara. Two different data collection tools were used in this study. The first one is the personal 

information form and the second one is the computational thinking ability form. In this study, the factors 

affecting the computational thinking skills of students were examined. These factors are gender, 

education level, IT usage experience, daily internet usage period, mathematics achievement, attitudes 

towards the mathematics course, attitudes towards science courses, achievements in science courses, 

achievements in information technology courses and attitudes towards information technology courses. 

Among these factors, it was determined that the most effective factors on computational skills were 

education level, mathematics achievement, attitude towards the mathematics course and attitude towards 

science courses. 

 

Upon analysis of these studies, it becomes apparent that it is lessons in coding, mathematics, natural sciences, 

social sciences and language arts, taught according to computational thinking skills and not mere programming 

or coding education, which affect an increase in the problem-solving, abstract thinking, troubleshooting, 

procedural thinking and similar abilities in students. An appropriate and interdisciplinary application of the 

component of CT abilities needs to be advanced in order to raise students not only as coders but as individuals 

with a radical way of thought and perspective. Furthermore, it may be appropriate for Computational thinking and 

STEAM (Science, Technology, Engineering, Arts and Mathematics) to be considered together as these two fields 

share a great deal of subject material (Gülbahar, 2017: p.331). Interdisciplinary work on the part of the students 

and their ability to realize relationships between areas of study, determine the problems they are facing, investigate 

potential solutions, decide upon the correct solution, gather data, analyze data, troubleshoot, develop their models 

and generalize solutions (ISTE, 2016) will aid their problem-solving abilities. 
 
6. Conclusion 

Computer science-based technologies are developing rapidly in our era, influencing the problem-solving 

processes and social lives of both individuals and societies. From medical work to social media use, results of 

computer science studies are integrated to the daily lives of individuals in a multitude of fields. The effects of 

computer science on modern society is also an indicator of its effects on the scientific method and therefore, 

naturally, scientists. Natural scientists have long positioned computation as a “third” foundation of the scientific 

method alongside theory and experimentation, and that computational thinking is essential to their work (Denning, 

2009). 

Though the definitions of and framework for computational thinking as set out by Wing (2006) have long been 

critiqued by other researchers, the importance of computer science has been growing daily, finding applications 

in multiple fields from curing disease to preventing terrorist attacks. Nonetheless, the claim that computer science 
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and as a results computational thinking is a fundamental discipline on par with reading, writing and basic 

arithmetic, is still being debated. 

Populist notions such as “Computer Science and Computational Thinking for All”, aimed at bringing the field to 

the mainstream, will make it more difficult for the field to preserve its rightful rigour. As we have deducted from 

the works of Denning, Hemmendinger and Barr amongst others presented in this article, ascribing an undeserved 

importance to certain fields – whether they be deemed coding, computer science, or computational thinking – 

would be inappropriate. Still, researchers may benefit from holding computational thinking as a potential method 

of transforming education, as long as they also hold the criticisms applied to the field in equal regard. As Denning 

(2010, p.28) has also stated, holding computational thinking (and coding) in (undeservedly) excessive esteem may 

lead us back to the same pitfalls we are attempting to avoid. 

As a final remark, we hold that the fundamental goal of computational thinking (and instilling this ability in 

students) and computer education should be aiding students in understanding and – through use of their creative 

impulses – changing the world they live in, for the better (Department for Education, 2014, p.217).  
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