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Abstract 

This study examines the relationship between students' pre-college experience with computers 

and their later success in introductory computer science classes in college. Data were drawn from 

a nationally representative sample of 10,197 students enrolled in computer science at 118 colleges 

and universities in the United States. We found that students taking introductory college computer 

science classes who had programmed on their own prior to college had a more positive attitude 

toward computer science, lower odds of dropping out, and earned higher grades, compared with 

students who had learned to program in a pre-college class, but had never programmed on own, 

or those who had never learned programming before college. Moreover, nearly half of the effect 

on final grades was mediated by a positive attitude toward computing. 
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1. Introduction  

“…it is often the case that students come into the institution with a self-taught 

‘cowboy’ style of programming that in no way resembles the good programming 

practices which we are trying to convey. In teaching, we have to make sure that 

those students change their habits over time. Changing one’s habits, however, is 

harder than learning new ones.”  

—Kölling, 1999, p. 4   
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Preparing students for careers that require college degrees in science, technology, engineering, 

and mathematics (STEM) is a dominant concern of K-12 education in the United States 

(Handelsman & Smith, 2016). Computing lies at the epicenter of this concern (Smith, 2016), as 

labor force experts have issued dire warnings that the overall size of the American-trained future 

workforce in the computer science and IT fields is too small to maintain the nation's status as a 

leader in this area (National Research Council, 2012).  

Students interested in majoring in computer science (CS) or other STEM fields want to do well 

in their introductory college CS course, because inferior performance may lead them to abandon 

career plans and change majors. However, learning to program is difficult—it requires thinking 

in a completely new way (Robins et al., 2003) known as computational thinking (Grover & Pea, 

2013). It also requires that students be comfortable with learning by trial and error, (Anderson & 

Gegg-Harrison, 2013; Cooper, Dann, & Pausch, 2003), learning from open communities, and 

creating and participating in socially engaged practice (“the social turn”; Kafai & Burke, 2013). 

It has been found that it takes a novice programmer about 10 years to become an expert (Winslow 

1996). Researchers have noticed a bimodal distribution in course grades (Lilja, 2001; Lister & 

Leaney, 2003; Carey, 2010), with failure rates commonly ranging between 30% to 60% 

(Bennedsen & Caspersen, 2007; Dehnadi & Bornat, 2006; Robins, 2010, Watson & Li, 2014). 

A large body of research over the past 40 years has examined factors that predict success in 

introductory CS courses. Learning theory research suggests a growth mindset versus fixed 

mindset about learning may be a factor in general student success (Dweck, 2006). The CS 

education literature has identified several predictors of success in programming, namely, 

mathematics ability (Beaubouef, 2002; Byrne and Lyons, 2001;Konvalina, Wileman, & Stephens, 

1983; Werth, 1986; Wilson & Shrock, 2001), problem-solving ability (Nowaczyk, 1984), high 

aptitude (determined by SAT, ACT, or researcher-administered tests; Wileman et al., 1981), 

perceived self-efficacy (Wiedenbeck, 2005), strong previous academic performance (Byrne & 

Lyons, 2001), and psychological factors, such as student comfort level (Ventura, 2005).  

Of all the factors tested in the CS education literature, previous programming experience stands 

out as the single factor most consistently predicting student success in these courses (Wiedenbeck, 

2005 [n=120]; Byrne & Lyons, 2001 [n=110]; Wilson & Shrock, 2001 [n=105]; and Hagan & 

Markham, 2000 [n=75]). Furthermore, “prior self-initiated computer experience, [mostly gained 

outside of school through “hacking” and unguided exploration], was highly predictive of 

university-level introductory CS course performance” (Kersteen, Linn, Clancy, & Hardyck, 1988, 

p. 328). Other researchers in the 1980s had also demonstrated that students were able to acquire 

a considerable amount of computational thinking skills by learning in a purely self-discovery 

environment without any teaching intervention (Kurland & Pea, 1985; Papert, 1980). The 

underlying philosophy is consistent with learning theories such as constructivism (Piaget & 

Inhelder, 1969), active learning (Harmin & Toth, 2006), and learning by design (Goldman, Eguchi, 

& Sklar, 2004), and quickly became the cornerstone of educational interventions using LEGO-

Mindstorm (Kabatova & Pekarova, 2010) and robot design (Mubin et al., 2013). This philosophy, 

however, stands in contradiction to Kölling’s (1999) assertion of the drawbacks of “cowboy 

programming” (in the title of this article, we expanded the original term adding "cowgirl 

programming" to steer clear of what some might consider gender-biased language, We have 

combined both, for convenience in places, with “cowhand” programming )—if we define 

cowhand programming as self-initiated programming practice, unguided and outside of school.  

In any case, just how much a self-initiated/self-discovery cowhand programming experience 

improves, or hampers students’ long-term programming efficacy and performance is yet to be 
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examined. Researchers who took a middle ground advocated that self-discovery-based learning 

should be incorporated with a guided and supportive curriculum (Fay & Mayer, 1994; Lee & 

Thompson, 1997; Mayer, 2004). Nevertheless, the comparative efficacy of cowhand-oriented and 

instruction-oriented approaches, the interplay of the two approaches, and the optimal sequence of 

the two approaches, remain hotly debated (Chase & Klahr, 2017; Dean & Kuhn, 2007; Furtak et 

al., 2012; Klahr, 2010; Roll et al., 2017; Tobias & Duffy, 2009; Weaver et al., 2017). 

A clearer understanding of the specific ways of attaining programming experience that helps 

students succeed in later CS coursework will benefit practitioners who operate or create programs, 

students who must choose in what fashion to expend their time and energy, and college CS 

instructors who seek to understand their students’ learning styles and to create the best learning 

opportunities for their students. This is more important today than ever because of the rising 

investment in K-12 CS offerings, as well as the proliferation of free, interactive, responsive, web-

based programming education platforms like CodeAcademy, code.org, and Khan Academy, 

where one can learn programming on one’s own. 

While CS education at the K-12 level has expanded significantly in the United States (e.g., CS 

10k, AP Computer Science: Principles), across the European Union (e.g., European Coding 

Initiative), in the United Kingdom (e.g., Computing at School), Australia (e.g., Digital 

Technologies), and Mexico (Escherle, Ramirez-Ramirez, Basawapatna, Assaf, Repenning, 

Maiello, Endo & Nolazco-Florez, 2016), little is known about the degree to which such initiatives 

are successful beyond the immediate measurement of student enjoyment. A more rigorous 

approach to evaluating the effectiveness of precollege experiences is to measure their impact on 

performance in later introductory college coursework (Tai, Sadler, & Mintzes, 2006). In this way, 

many different types of in-school and out-of-school initiatives and experiences can be compared, 

and resources can be better allocated to those programs that are the most effective, rather than 

relying on anecdotal reports to make policy decisions. In the case of computer science, examining 

the degree to which precollege experiences predict performance in introductory college CS 

courses nationwide, provides a metric that is both fair and meaningful. 

In this study, we ask if pre-college cowhand programming experience is associated with different 

college level CS attitude and performance, compared with a) students who had never had any 

programming experience, b) students who had learned programming only in a previous class, but 

never cowhand, and c) students who had both in-class and cowhand programming experience (in 

each possible sequence). 

2. Data collection 

The “Factors Influencing College Success in Information Technology” (FICSIT) study, which 

was conducted at Harvard University with funding from the National Science Foundation (grant 

number 1339200), supplied the data for this article. The FICSIT study sent out a 52-item survey 

to examine the pre-college computer experiences of students. The study’s investigators obtained 

responses from a stratified random sample of 10,197 students enrolled in 118 2- and 4-year 

colleges and universities across the United States. The Integrated Postsecondary Education Data 

System of the National Center for Educational Statistics provided a listing of post-secondary 

institutions that was used to build a stratified random sample reflecting the proportion of students 

in the U.S. enrolled in 2-and 4-year colleges in three different size bins (small, medium, and large). 

We contacted 1080 different institutions (279 2-year and 801 4-year) that offered introductory 

courses in CS in the fall semester of 2015; 138 of them agreed to participate (30 2-year and 108 

https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR9
https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR14
https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR24
https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR51
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4-year), and 118 of them (23 2-year and 95 4-year) actually returned the survey. Thus, our final 

sample consisted of 118 institutions. Within the first two weeks of class, 10,197 students filled 

out a 52-item, paper-and-pencil, in-class survey about their prior CS experiences and current 

attitudes about computing, along with background questions about a wide variety of their 

educational experiences, as well as family background and demographic characteristics. 

Instructors provided students’ final grade in the college introductory CS course or indicated that 

the student had dropped the course. We excluded respondents who had missing values in more 

than 50% of the questionnaire or in the key predictor variables or outcome variables. As a result, 

the final sample size in our analysis was 8,891. 

3. Variables and modeling  

This section explains the variables and analysis methods. In a nutshell, the predictor of interest 

was participants’ programming experience, but we also controlled for a wide range of background 

variables. The predictor variables and controlled variables were collected retrospectively. The 

dependent or outcome variables were 1) the grade in computer science that they eventually 

received in the introductory CS course by the end of the semester (filled in by their instructors); 

2) participants’ attitude toward computer science at the time they answered the survey; and 3) 

course completion. Students in the sample were clustered in the models by their course instructor. 

To account for the significant autonomy instructors often have in grading, a random intercept, 

two-level hierarchical approach was used in all models. We first built hierarchical regression 

models to predict each of the dependent variables separately. We further constructed a path model 

to predict multiple dependent variables simultaneously.  

3.1. Predictor of interest 

While this study considered many student pre-college experiences with computing as possible 

predictors of performance, the final models examined programming experience in terms of 

“cowhand programming” and in-class computing experience. Our definition of cowhand 

programming was that a student had programmed by him/herself without the supervision of 

classroom teachers. It could happen prior or after taking computing classes, or not in combination 

with any in-class experience. The type of programming experience was determined based on 

participants’ answers to questions about “taking a class about computer programming,” “have 

programmed on my own,” and the order of the two. There were five groups: 1) control (n=6824), 

students who had never taken any class about computer programming, nor had practiced 

programming outside of class; 2) cowboy-or-cowgirl-only (479), students who had programmed 

on their own, but had never taken any class about computer programming; 3) cowhand→class 

(n=250), students who had first programmed on their own prior to taking a class about computer 

programming; 4) class→cowhand (n=422), students who had started programming on their own 

during or after taking a class; 5) Class-only (n=916), students who had taken classes about 

computer programming, but had never programmed on their own. We did not know the particular 

programming languages that the participants learned because such information was not specified 

in the questionnaire. We discuss this limitation by the end of the article. 

3.2. Control variables 

Several variables were used in the model to account for significant differences in student 

backgrounds. Gender was coded as a dichotomous variable, zero for female and one for male. 

Race/ethnicity was divided into five categories coded as a set of dummy variables—Asian, 

Hispanic, black, and white, with white as the baseline.  
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Socioeconomic status (SES) entered the model through the proxy of parents’ education. The 

parents’ highest level of education was indicated by students on a scale from zero through five: 

zero representing “did not finish high school,” one—“high school graduate,” two—“some 

college,” three—“4 years of college,” and four—“graduate level education.”  

Mathematics preparation has often been found to be associated with CS course performance 

(Byrne & Lyons, 2001; Werth, 1986; Wilson & Shrock, 2001). The SAT/ACT mathematics score 

was used as a proxy for the students’ academic preparation and aptitude. If students reported ACT 

scores, but no SAT scores, their ACT scores were converted to the SAT scale according to a 

concordance published by the College Board (1999). In our sample, the correlation between 

SAT/ACT mathematics score and overall SAT/ACT score was 0.25. 

We also controlled for whether the student was born in the United States, whether the first 

language was English, whether the student went to a public high school, whether the student had 

access to computer at home, and whether the job of any of the parents was related to CS. In all 

statistical models, we have controlled for the covariates listed above. 

3.3 Dependent variables 

This study estimated with three distinct dependent variables. The first was a hierarchical linear 

regression model, for which the dependent variable was the numerical grade in the course in 

introductory college CS at the end the semester. Institutions in the sample used different measures 

in awarding grades, with 11% using single letter grades (i.e., A, B, C, D, F), 40% using “+” and 

“-” to augment letter grades (e.g., A+, B-), and 49% using a 100-point scale. All letter grades 

reported were converted to the same 0 to 100-point scale (e.g., B+=88.5, B=85, B-=81.5). For 

uniformity, all grades below 60 were coded as 55, representing an “F.” 

The second was another hierarchical linear regression model. The dependent variable was positive 

attitude toward CS, which was represented by the first component score based on a principal 

component analysis of 23 items. Overall, this is a measurement of the level of interest, efficacy, 

and comfort in regard to computing. The scale was developed by the authors, Inspiration for some 

attitude items was drawn from the Computing Research Association (CRA) Undergraduate 

Survey and the Scientific Attitude Inventory (Moore & Hill Foy, 1997). The scale had a very 

good internal consistency with a Cronbach alpha value of 0.91. We used the first component 

because it has an eigenvalue of 9.12 and successfully explained 38% of the variance, whereas the 

second component only has an eigenvalue of 1.60 explaining 6.4% of the variance. Table 1 

presents the wording and loading of each item. 

Table 1. Wording and PCA loading of each items in the scale measuring 

positive attitude towards CS 

 
Positive Attitude 

(PC1) 

Items Loading Contrib% 

1. Computer science is interesting to me 0.84 7.75 

2. I look forward to taking computer science 0.83 7.70 

3. I feel I belong in computer science 0.80 7.00 
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4. I am confident I can do well in computer science 0.76 6.25 

5. Computer science is a creative activity 0.75 6.20 

6. Computer science can help in solving problems 0.74 5.96 

7. I enjoy using algorithms to solve computational 

problems 

0.73 5.79 

8. Computer science allows me to develop models from 

abstractions 

0.73 5.82 

9. I feel comfortable doing computer science 0.72 5.64 

10. Computer science facilitates the creation of 

knowledge 

0.70 5.47 

11. Computer science is relevant to real life 0.63 4.38 

12. I do not get discouraged from setbacks in computer 

science 

0.62 4.30 

13. I wish I did not have to take computer science -0.61 4.21 

14. Computer science is boring for me -0.59 3.93 

15. I feel accepted by my peers in computer science 0.56 3.43 

16. Computer science provides new ways to 

communicate globally 

0.55 3.36 

17. The internet fosters collaboration worldwide 0.49 2.64 

18. I am comfortable asking classmates for help 0.43 1.96 

19. Computer science people are intelligent 0.39 1.71 

20. Most people can understand computer science 0.39 1.67 

21. I am comfortable asking my professors/TAs/tutors for 

help 

0.37 1.54 

22. Computer science makes me nervous -0.32 1.17 

23. Most people in computer science are nerds or geeks 0.02 0.01 

 

The third model was a hierarchical logistic regression model, with a binary dependent variable 

indicating whether students either completed their college CS course or dropped out of the 

course—5.54% of sampled students.  

Lastly, we specified a path model to test the relationship among cowhand programming 

experience, positive attitude towards CS, and final grade. Specifically, we examined whether the 

effect of prior experience on the final grade was mediated by positive attitude.  
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4. Results 

4.1 Descriptive statistics 

The mean grade for those who completed the course was 84.34 (sd=13.83) on a 100-point scale. 

The mean mathematics SAT/ACT score was 639.27 (sd=126.53), approximately 1.39 standard 

deviation (in standard deviation units of our sample) higher than the national average of 500 

(College Board, 2014). Two-thirds of the sample had at least one parent with either 4 years of 

college or a post-graduate education. With just a 5.5% dropout rate, this U.S. study’s findings are 

at odds with Bennedsen and Caspersen’s (2007) and Watson and Li’s (2014) global studies, which 

estimated a roughly 33% dropout rate for introductory programming courses. Other descriptive 

summaries, broken down by programming experience groups, are shown in Table 2. 

Table 2. Descriptive summary by group     

 None Cowhand 

Only 

Cowhand-> 

Class 

Class-> 

Cowhand 

Class Only 

Definition:      

      Taking class No No Yes Yes Yes 

      Practicing programming No Yes Prior class In/After class No 

N 6824 479 250 422 916 

Dropout Rate 5.80% 3.50% 4.40% 4.70% 5.80% 

Final Grade (sd) 84.01 (13.94) 87.46 (12.33) 86.75 (11.79) 86.21 (12.37) 82.40 (14.88) 

Male 70.76% 85.14% 82.11% 80.14% 68.34% 

Born in US 75.40% 82.67% 81.20% 84.59% 68.62% 

English is First Language 69.50% 79.33% 79.60% 76.06% 66.32% 

Public High School 77.40% 73.27% 71.60% 77.25% 79.49% 

Race. Asian 24.20% 24.63% 26.80% 23.93% 19.87% 

          Hispanic 9.60% 2.64% 4.00% 6.23% 15.28% 

          Black 8.40% 5.33% 4.80% 6.10% 15.48% 

          White 57.80% 67.40% 64.40% 63.74% 49.37% 

SAT Math Score  

          ...(sd) 

634.54 

(125.71) 

683.11 

(104.64) 

693.12 

(109.07) 

678.72 

(108.73) 

561.25 

(142.78) 

CS Help Outside of School 6.60% 16.07% 20.40% 15.87% 8.70% 

Parents' Jobs Relate to CS 2.10% 32.35% 46% 33.88% 23.01% 

Access Computer at Home 9.10% 97.28% 92.33% 96.19% 83.55% 
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4.2. Hierarchical models 

Our first hierarchical regression model (M1) showed that all three groups that had cowhand 

programming experience did not statistically differ from each other in the final grade. All three 

of them outperformed the control group. They also outperformed the Class-Only group based on 

our post-hoc test (for Cowhand-Only versus Class-Only, 2=17.70, p<0.001; for 

Cowhand→Class versus Class-Only, 2=13.11, p<0.001; for Class→Cowhand, 2=9.59, 

p=0.002). Figure 1 shows the predicted score by programming experience groups, controlling for 

other covariates at the mean. This result also translates to a significant main effect of cowhand 

programming (=2.13, se=0.47, p<0001) if we aggregate the five groups into two groups 

(Cowhand versus non-Cowhand). On average, students who had programmed on their own scored 

2.13 points higher than students who had not, an effect size of 0.15.  

 

 

Similarly, in M2, the three groups that had cowhand programming experience did not differ from 

each other on the scale of positive attitude towards CS, whereas they scored higher than the 

control and the Class-Only group. 

In the hierarchical logistic regression predicting student dropout (M3), we found that the 

Cowhand-Only group was the only group that to yield significantly lower odds of dropping out 

than the control group. The parameters for all three models are shown in Table 3. 
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Table 3. Hierarchical regression model predicting the final grade and the odds of dropout 

  M1.Final Grade M2.Positive Attitude  M3.Dropout 

   s.e. 
p-

value 
b s.e. 

p-

value 

Odd 

Rati

o 

s.e. 
p-

value 

Cowhand-Only 2.23 0.68 0.001 1.29 0.14 
0.000

1 
0.52 0.16 0.04 

Cowhand->Clas

s  
2.43 0.92 0.01 1.31 0.19 

0.000

1 
0.64 0.25 0.25 

Class->Cowhan

d 
1.59 0.7 0.03 1.19 0.15 

0.000

1 
0.61 0.17 0.08 

Class-Only -0.8 0.77 0.227 -0.16 0.12 0.17 0.89 0.3 0.75 

                    

Male -1.04 0.36 0.004 
0.94 0.07 

0.000

1 
0.94 0.13 0.67 

US born -0.75 0.49 0.13 -0.37 0.11 0.001 1.65 0.32 0.01 

Language 0.59 0.47 0.21 -0.02 0.1 0.8 0.79 0.14 0.19 

Pub-School 0.27 0.38 0.48 0.01 0.08 0.88 1 0.15 0.99 

Asian -0.83 0.44 0.06 -0.16 0.09 0.1 0.85 0.14 0.37 

Hisp -1.09 0.55 0.04 0.27 0.11 0.02 0.84 0.17 0.42 

Black -4.51 0.63 
0.000

1 
-0.05 0.13 0.71 0.84 0.22 0.5 

Ed Father 0.41 0.17 0.01 -0.09 0.04 0.02 0.93 0.06 0.26 

Ed Mother -0.08 0.18 0.65 -0.03 0.04 0.05 0.96 0.07 0.53 

SAT score 0.02 
0.00

1 

0.000

1 

0.00

3 

0.000

3 

0.000

1 
0.99 

0.000

4 

0.000

1 

Help  0.23 0.58 0.69 0.28 0.13 0.03 0.6 0.16 0.06 

Parent job -0.59 0.38 0.12 -0.13 0.08 0.12 0.93 0.14 0.64 

Access to 

computer 
0.14 0.75 0.85 0.08 0.16 0.61 0.52 0.13 0.01 

Intercept 68.11 1.44 
0.000

1 
-3.79 0.32 

0.000

1 
0.21 0.12 0.006 

                    

2(Level-2) 22.84 0.38   0.89 0.07   2.85 0.21   

2(Level-1) 
147.3

8 
0.11   2.53 0.02   

      

                    

 

Lastly, we used the path analysis to examine a possible mediation of the effect from cowhand 

programming experience to final grade via positive attitude. Because M1 and M2 have both 

shown that the three groups with cowhand programming experience did not differ from each other, 

and that Class Only and the control group did not differ from each other, we decided to simplify 

our model to merge the five groups into two groups (Cowhand versus Non-Cowhand) to model 

the cowhand programming effect in general. We ran a path analysis that simultaneously tested for 
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the effect of cowhand programming on positive attitude, the effect of cowhand programming on 

final grade, and the effect of positive attitude on final grade, while controlling for all covariates 

and accounting for the two-level clustering. 

As shown in Figure 2 (for presentation purpose this figure does not show the covariates and 

clustering; they were nevertheless accounted for in the model), when modeling the effects 

simultaneously, cowhand programming had significant positive effect on positive attitude 

(std.est=1.735, robust.se=0.113, p<0.001) and final grade (std.est=0.086, robust.se=0.035, 

p=0.015), and the positive attitude also had a positive effect on final grade (std.est=0.041, 

robust.se=0.005, p<0.001). There was a significant mediation effect from cowhand programming 

to final grade via positive attitude (std.est=0.070, robust.se=0.009, p<0.001), whereas the total 

effect from cowhand programming to final grade was 0.157. In other words, 44.58% of the total 

effect from cowhand programming to final grade was mediated by positive attitude.  

 

 

5. Discussion and conclusion 

In Paradoxes of Education in a Republic, philosopher Eva Brann (1979) wrote, in 1979, “Those 

who lack a good grounding must learn laboriously and lengthily in schools what the well-educated 

learn quickly by themselves.” She mentioned computer programming explicitly as an example of 

a field in which this is the case. We have found little to refute this nearly half-century-old claim. 

At the pre-college level, self-directed learning still may be the best way to learn to program. 

Why might it be the case that cowhand programmers outperformed the other students on all fronts? 

It is reasonable to suspect that cowhand programmers have a greater perceived self-efficacy and 

comfort level with programming. Moreover, by programming alone, cowhand programmers have 

expressed greater interest in, and commitment to, the subject, which may help them push through 

the difficult portions of their college CS course when many of their peers do not. This 

interpretation is supported by the mediation effect of positive attitude, which measures the level 

of interest, efficacy, and comfort. Previous research has also shown such a mentality to be 

associated with success in CS (Ramalingam, LaBelle, & Wiedenbeck, 2004; Ventura, 2005; 

Wiedenbeck, 2005). In addition, because college requires a more independent working style than 

does high school, it is possible that cowhand programmers are more suited to college success in 

general. College work may require more independence from classroom instructors, but it is not 

Cowhand 

Program

ming 

Positive 

Attitude 

Final 

Grade 

1.735 

0.086 

Figure 2. Path diagram of the effect from Cowhand programming to 

final grade partially mediated by positive attitude towards computer 

science. Other covariates and two-level clustering were accounted 

for in the estimation but not shown in the diagram. 
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independent of the outside world. This is especially true for CS, which enables, and heavily relies 

upon, the open source online community. The development of search engines, as well as the ease 

with which learners can access the help of experts through message boards and websites like 

Stack Exchange, means that one is hardly learning alone anymore when one is programming “on 

one’s own.” Students who have had the experience of programming independent of a classroom 

instructor may be more familiar and comfortable using a variety of tools to “geek out and mess 

around,” an attribute that is crucial for new generation programmers and innovators (Ito et al., 

2009; Liggett, 2014; McKenna & Bergie, 2016). 

Compared with the cowhand-only group, our study did not find any distinctive advantage for 

cowhand programming in combination with classroom learning in whichever sequence. This 

might be due to the lack of information about the pedagogy adopted in the prior computing classes. 

Nevertheless, our finding strongly suggests that to learn in class without any independent hands-

on experience is a rather ineffective strategy.  

The major limitation of this study was that we could not narrow down the language, environment 

and pedagogy in which the cowhand and in-class groups were introduced to computer 

programming. Because of the varying complexity of underlying data structures and algorithms, 

the specific programming languages the students are exposed to could make a significant 

difference in their attitude toward CS subjects in general. For example, students who had 

experience with Alice, which uses stories and games to teach logic and primitive data structures, 

would have very different understanding and expectations of CS subjects from those who had 

exposure to a modern high-level programming language like C++ or Java. It is not uncommon for 

CS majors to drop out or change majors simply because they are frustrated by the very first 

programming language they encounter. As a matter of fact, many schools have moved from the 

strongly typed (stricter typing rules) languages, such as C++ or Java, to scripting languages like 

Python in their CS1 curriculum, to improve retention. Future studies should carefully observe the 

context in which student learn their first programming language by themselves, with family, 

online or in class. 

Cowhand programmers’ stronger college CS performance suggests that, whatever bad habits they 

may have developed by lacking a teacher to guide them, as Kölling (1999) suggests, those are 

more than compensated for by what they learn on their own. However, the claim that cowhand 

programmers have a tendency pick up negative habits may be far less tenable today than it may 

have been in 1999, at the time of his writing. Recent advances in graphic based languages, such 

as Scratch, as introductory languages, have greatly reduced the demand for syntactic memory. 

Accompanied with well-designed tutorials, challenges and forums online, these introductory 

languages have empowered beginners to self-explore and self-teach at a young age. Many 

scholars once expressed concerns, similar to Kölling’s, that non-professional languages may 

introduce bad syntactic habits, such as missing semicolons or cluttered global variables 

(Meerbaun, Armoni & Ben-Ari, 2011; Powers, Ecott & Hirshfield, 2007; Techapalokul, 2017). 

An increasing number of studies, however, has shown that such an introductory language 

environment both promotes interest in programming (Bers, 2010; Brennan et al., 2011; Fessakis, 

Gouli & Mavroudi, 2013; Sáez-López, Román-González & Vázquez-Cano, 2016; Weintrop & 

Wilensky, 2017; Wilson & Moffat, 2012) and has long-term performance benefits in 

programming (Chen, Haduong, Brennan, Sonnert & Sadler, 2018). Based on our findings, and 

the recent development of beginner friendly programming environments, we recommend that 1) 

introduction to computer programming should not wait until taking a formal course; students 

should be encouraged to explore by themselves. 2) Getting one’s hands “dirty” is more important 
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than keeping the code “clean” and well formatted. Only following instruction in a pre-college 

classroom without more independent hand-on experience may place students at a disadvantage 

compared with those who have hand-on experience, but are not class-trained. 3) To program in 

cowhand style does not only lead to acquisition of knowledge and skills, but more importantly 

appears to cultivate a positive attitude towards computer science, which translates to better 

performance in programming in the long term. 

The demand for professional programmers, the interest in majoring in CS in college, and the 

general push by parents and policy makers for K-12 offerings in computer science have all 

increased (Yadav, 2016; Strickland, 2014; Taylor & Miller, 2015). In the meantime, many 

secondary CS teachers are currently undertrained, with limited teacher preparation for teaching 

pre-college computer science in the United States (Yadav, 2016). Despite the scarcity of resources, 

students have pursued self-teaching through innovative channels such as Code Academy, Dev 

Bootcamp, and open resources (McKenna & Bergie, 2016). We believe such a self-initiated 

approach should be supported wherever and whenever possible by pointing students towards the 

best available learning resources and encouraging them to work on their own with the help of 

responsive tools, online community support, and well-designed instruction.  
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